99精品伊人亚洲|最近国产中文炮友|九草在线视频支援|AV网站大全最新|美女黄片免费观看|国产精品资源视频|精彩无码视频一区|91大神在线后入|伊人终合在线播放|久草综合久久中文

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

自然語言處理BERT中CLS的效果如何?

深度學(xué)習(xí)自然語言處理 ? 來源:AI自然語言處理與知識圖譜 ? 作者:Elesdspline ? 2021-04-04 17:01 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

要說自然語言處理在18年最奪目閃耀的是什么事情,那當屬 BERT 刷新各個任務(wù)的記錄了,至今已經(jīng)過去了近兩年半的時間,但其影響力未曾衰減,無論學(xué)術(shù)界還是工業(yè)界,很多的工作與部署都圍繞其展開,對很多的下游任務(wù)都有舉足輕重的作用,真的是里程碑啊。

相信大家都有過BERT、ALBERT等預(yù)訓(xùn)練語言模型應(yīng)用在自己任務(wù)上的實踐經(jīng)歷,可能是情感分析、分類、命名實體識別、閱讀理解、相似度計算等等,使用的方法也無非是在自己任務(wù)上 fine-tune 或者作為預(yù)訓(xùn)練Embedding,使用的預(yù)訓(xùn)練模型大多是公開的,大佬們(財大氣粗、資源無數(shù))訓(xùn)練好的。(有錢真好)

在用預(yù)訓(xùn)練模型的時候,根據(jù)任務(wù)的不同,用到信息也不同,有的需要是詞表示,比如命名實體識別、詞性標注等任務(wù),有的需要的是句子表示,比如分類、句子語意匹配等。這里我要說的句子表示這一類的任務(wù),大家經(jīng)常會用到的 [CLS] 特征信息作為句子向量表示,CLS 作為 BERT/ALBERT序列信息中特殊的一個存在,在最開始設(shè)計模型的時候便考慮將其作為后續(xù)文本分類的表示,然而直接使用 CLS 的效果真的會滿足我們的預(yù)期嘛?相信大家在實踐的過程中都有所體會~,另外 ALBERT 和 BERT 在下游任務(wù)應(yīng)用上面孰好孰壞,是否有一個定論?

我最近看到了一篇 Arxiv 的文章,題目是 《Evaluation of BERT and ALBERT Sentence Embedding Performance on Downstream NLP Tasks》,這篇文章在 BERT/ALBERT 提取信息作為句子信息表示應(yīng)用在下游任務(wù),對其效果進行了評測,或許會解答我們實踐中的疑惑,也或者會給我們一些預(yù)訓(xùn)練模型在下游任務(wù)應(yīng)用的啟發(fā),讓我們來看下~

評測對比

有一系列的對比實驗,來看在下游任務(wù)上面的效果~

[CLS] embeddings

CLS 通過 Self-Attention 機制來獲取句子級別的信息表示,在不同的任務(wù)上 Fine-tune 之后,CLS 會捕捉特定環(huán)境下的上下文信息表示。

Pooled embeddings

將文本中的所有詞做 Avg-pooling 或者 max-pooling。

Sentence-X(SBERT/ALBERT)

BERT 在語義相似度任務(wù)上面也取得了很不錯的效果,然后其內(nèi)部的結(jié)構(gòu)在計算過程中會導(dǎo)致非常耗時,不適合做語義相似度匹配任務(wù),特別是在工業(yè)界,BERT 的耗時無法滿足上線的需要。針對這個問題,有人提出 Sentence-BERT,采用孿生網(wǎng)絡(luò)模型框架,將不同的句子輸入到參數(shù)共享的兩個BERT模型中,獲取句子信息表示,用于語義相似度計算,最終相比BERT效率大大提升,滿足工業(yè)界線上需要。SBERT 從65小時降到5秒,具體詳見參考資料2。

99cb1f6c-88e9-11eb-8b86-12bb97331649.png

CNN-SBERT/SALBERT

在上圖中,SBERT 采用 Avg-pooling 獲取句子向量表示,本文將其替換成 CNN 網(wǎng)絡(luò)結(jié)構(gòu)獲取句子向量表示。

99fe6886-88e9-11eb-8b86-12bb97331649.png

結(jié)果分析

評測任務(wù)

STS:Semantic Textual Similarity

NLI:Natural Language Inference

評測指標

Pearson and Spearman’s rank coefficients(皮爾遜和斯皮爾曼相關(guān)系數(shù))

評測數(shù)據(jù)

Semantic Textual Similarity benchmark(STSb)

Multi-Genre Natural Language Inference(MultiNLI)

Stanford Natural Language Inference(SNLI)

上面列出來相關(guān)的評測任務(wù)、評測指標以及評測所用到的數(shù)據(jù),下面先給出一張結(jié)果表,然后再詳細分析~

9a3609a8-88e9-11eb-8b86-12bb97331649.png

詳細分析

微調(diào)有效:這個是符合我們認知的,肯定是微調(diào)的效果要好。

CLS 效果:CLS 的效果要遜色很多,無論是在微調(diào)上面,還是不微調(diào)上面,CLS的效果都要遠遜色于平均池化操作或者其他方法。

不同方法效果:總體上來看,CNN-BERT > SBERT > Avg pooling > CLS

BERT 與 ALBERT:從上圖中大概能夠看出,不微調(diào)的情況下,兩者的效果差不多,但是微調(diào)之后,ALBERT的效果要比BERT差很多,僅僅在STSb上微調(diào)的時候,CLS 和平均池化的方法要好于BERT。

CNN的效果

從上圖來看,最好的結(jié)果是采用了 CNN 網(wǎng)絡(luò)結(jié)構(gòu),說明 CNN 起到了正向的作用,仔細觀察發(fā)現(xiàn),CNN 對 ALBERT 的改進要遠大于對 BERT 的改善提高。ALBERT 由于內(nèi)部參數(shù)共享,可能存在不穩(wěn)定性,CNN 網(wǎng)絡(luò)結(jié)構(gòu)或許可以減緩這種不穩(wěn)定性。

下圖也進行了一些對比,在幾個不同的數(shù)據(jù)集上驗證 CNN 的有效性,從最終的 Avg 結(jié)果來看,CNN 網(wǎng)絡(luò)結(jié)構(gòu)對 ALBERT 有改善提升。

9a91a5e2-88e9-11eb-8b86-12bb97331649.png

以上是根據(jù)實驗結(jié)果進行的簡單分析,其中有一些結(jié)論和對比可以在我們?nèi)粘5膶嵺`中借鑒并嘗試,說不定會有不錯的效果~

原文標題:【BERT】BERT中CLS效果真的好嘛?這篇文章告訴你答案

文章出處:【微信公眾號:深度學(xué)習(xí)自然語言處理】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

責任編輯:haq

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 人工智能
    +關(guān)注

    關(guān)注

    1807

    文章

    49029

    瀏覽量

    249601
  • 自然語言
    +關(guān)注

    關(guān)注

    1

    文章

    292

    瀏覽量

    13656

原文標題:【BERT】BERT中CLS效果真的好嘛?這篇文章告訴你答案

文章出處:【微信號:zenRRan,微信公眾號:深度學(xué)習(xí)自然語言處理】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    如何優(yōu)化自然語言處理模型的性能

    優(yōu)化自然語言處理(NLP)模型的性能是一個多方面的任務(wù),涉及數(shù)據(jù)預(yù)處理、特征工程、模型選擇、模型調(diào)參、模型集成與融合等多個環(huán)節(jié)。以下是一些具體的優(yōu)化策略: 一、數(shù)據(jù)預(yù)處理優(yōu)化 文本清洗
    的頭像 發(fā)表于 12-05 15:30 ?1708次閱讀

    如何使用自然語言處理分析文本數(shù)據(jù)

    使用自然語言處理(NLP)分析文本數(shù)據(jù)是一個復(fù)雜但系統(tǒng)的過程,涉及多個步驟和技術(shù)。以下是一個基本的流程,幫助你理解如何使用NLP來分析文本數(shù)據(jù): 1. 數(shù)據(jù)收集 收集文本數(shù)據(jù) :從各種來源(如社交
    的頭像 發(fā)表于 12-05 15:27 ?1586次閱讀

    自然語言處理與機器學(xué)習(xí)的關(guān)系 自然語言處理的基本概念及步驟

    自然語言處理(Natural Language Processing,簡稱NLP)是人工智能和語言學(xué)領(lǐng)域的一個分支,它致力于研究如何讓計算機能夠理解、解釋和生成人類語言。機器學(xué)習(xí)(Ma
    的頭像 發(fā)表于 12-05 15:21 ?1988次閱讀

    語音識別與自然語言處理的關(guān)系

    在人工智能的快速發(fā)展,語音識別和自然語言處理(NLP)成為了兩個重要的技術(shù)支柱。語音識別技術(shù)使得機器能夠理解人類的語音,而自然語言處理則讓
    的頭像 發(fā)表于 11-26 09:21 ?1507次閱讀

    什么是LLM?LLM在自然語言處理的應(yīng)用

    所未有的精度和效率處理和生成自然語言。 LLM的基本原理 LLM基于深度學(xué)習(xí)技術(shù),尤其是變換器(Transformer)架構(gòu)。變換器模型因其自注意力(Self-Attention)機制而聞名,這種機制使得模型能夠捕捉文本的長距
    的頭像 發(fā)表于 11-19 15:32 ?3665次閱讀

    ASR與自然語言處理的結(jié)合

    ASR(Automatic Speech Recognition,自動語音識別)與自然語言處理(NLP)是人工智能領(lǐng)域的兩個重要分支,它們在許多應(yīng)用緊密結(jié)合,共同構(gòu)成了自然語言理解和
    的頭像 發(fā)表于 11-18 15:19 ?1026次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)在自然語言處理的應(yīng)用

    。 卷積神經(jīng)網(wǎng)絡(luò)的基本原理 卷積神經(jīng)網(wǎng)絡(luò)是一種前饋神經(jīng)網(wǎng)絡(luò),它通過卷積層來提取輸入數(shù)據(jù)的特征。在圖像處理,卷積層能夠捕捉局部特征,如邊緣和紋理。在自然語言處理
    的頭像 發(fā)表于 11-15 14:58 ?807次閱讀

    循環(huán)神經(jīng)網(wǎng)絡(luò)在自然語言處理的應(yīng)用

    自然語言處理(NLP)是人工智能領(lǐng)域的一個重要分支,它致力于使計算機能夠理解、解釋和生成人類語言。隨著深度學(xué)習(xí)技術(shù)的發(fā)展,循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)因其在處理序列數(shù)據(jù)方面的優(yōu)勢而在NLP
    的頭像 發(fā)表于 11-15 09:41 ?820次閱讀

    使用LSTM神經(jīng)網(wǎng)絡(luò)處理自然語言處理任務(wù)

    自然語言處理(NLP)是人工智能領(lǐng)域的一個重要分支,它旨在使計算機能夠理解、解釋和生成人類語言。隨著深度學(xué)習(xí)技術(shù)的發(fā)展,特別是循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)及其變體——長短期記憶(LSTM)網(wǎng)絡(luò)的出現(xiàn)
    的頭像 發(fā)表于 11-13 09:56 ?1165次閱讀

    自然語言處理與機器學(xué)習(xí)的區(qū)別

    在人工智能的快速發(fā)展,自然語言處理(NLP)和機器學(xué)習(xí)(ML)成為了兩個核心的研究領(lǐng)域。它們都致力于解決復(fù)雜的問題,但側(cè)重點和應(yīng)用場景有所不同。 1. 自然語言
    的頭像 發(fā)表于 11-11 10:35 ?1556次閱讀

    自然語言處理的應(yīng)用實例

    在當今數(shù)字化時代,自然語言處理(NLP)技術(shù)已經(jīng)成為我們?nèi)粘I畹囊徊糠?。從智能手機的語音助手到在線客服機器人,NLP技術(shù)的應(yīng)用無處不在。 1. 語音識別與虛擬助手 隨著Siri、Google
    的頭像 發(fā)表于 11-11 10:31 ?1618次閱讀

    使用LLM進行自然語言處理的優(yōu)缺點

    自然語言處理(NLP)是人工智能和語言學(xué)領(lǐng)域的一個分支,它致力于使計算機能夠理解、解釋和生成人類語言。大型語言模型(LLM)是NLP領(lǐng)域的一
    的頭像 發(fā)表于 11-08 09:27 ?2461次閱讀

    Llama 3 在自然語言處理的優(yōu)勢

    自然語言處理(NLP)的快速發(fā)展,我們見證了從基于規(guī)則的系統(tǒng)到基于機器學(xué)習(xí)的模型的轉(zhuǎn)變。隨著深度學(xué)習(xí)技術(shù)的興起,NLP領(lǐng)域迎來了新的突破。Llama 3,作為一個假設(shè)的先進NLP模型,代表了這一
    的頭像 發(fā)表于 10-27 14:22 ?732次閱讀

    AI大模型在自然語言處理的應(yīng)用

    AI大模型在自然語言處理(NLP)的應(yīng)用廣泛且深入,其強大的語義理解和生成能力為NLP任務(wù)帶來了顯著的性能提升。以下是對AI大模型在NLP應(yīng)用的介紹: 一、核心應(yīng)用 文本生成 AI
    的頭像 發(fā)表于 10-23 14:38 ?1548次閱讀

    AI智能化問答:自然語言處理技術(shù)的重要應(yīng)用

    自然語言處理(NLP)是人工智能領(lǐng)域的一個重要分支,它致力于使計算機能夠理解、解釋和生成人類語言。問答系統(tǒng)作為NLP的一個重要應(yīng)用,能夠精確地解析用戶以自然語言提出的問題,并從包含豐富
    的頭像 發(fā)表于 10-12 10:58 ?1097次閱讀
    AI智能化問答:<b class='flag-5'>自然語言</b><b class='flag-5'>處理</b>技術(shù)的重要應(yīng)用