99精品伊人亚洲|最近国产中文炮友|九草在线视频支援|AV网站大全最新|美女黄片免费观看|国产精品资源视频|精彩无码视频一区|91大神在线后入|伊人终合在线播放|久草综合久久中文

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

基于PyTorch的深度學習入門教程之PyTorch的自動梯度計算

ss ? 來源:雁回晴空 ? 作者:雁回晴空 ? 2021-02-16 15:26 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

本文參考PyTorch官網的教程,分為五個基本模塊來介紹PyTorch。為了避免文章過長,這五個模塊分別在五篇博文中介紹。

Part1:PyTorch簡單知識

Part2:PyTorch的自動梯度計算

Part3:使用PyTorch構建一個神經網絡

Part4:訓練一個神經網絡分類器

Part5:數據并行化

本文是關于Part2的內容。

Part2:PyTorch的自動梯度計算

autograd package是PyTorch中所有神經網絡的核心。先了解一些基本知識,然后開始訓練第一個神經網絡。autograd package提供了Tensors上所有運算的自動求導功能。它是一個按運行定義(define-by-run)的框架,這意味著反向傳播是依據代碼運行情況而定義的,并且每一個單次迭代都可能不相同。

1 變量(Variable)

autograd.Variable 是這個package的中心類。它打包了一個Tensor,并且支持幾乎所有運算。一旦你完成了你的計算,可以調用.backward(),所有梯度就可以自動計算。

你可以使用.data屬性來訪問原始tensor。相對于變量的梯度值可以被積累到.grad中。

這里還有一個類對于自動梯度的執(zhí)行是很重要的:Function(函數)

變量和函數是相互關聯的,并且建立一個非循環(huán)圖。每一個變量有一個.grad_fn屬性,它可以引用一個創(chuàng)建了變量的函數(除了那些用戶創(chuàng)建的變量——他們的grad_fn是空的)。

如果想要計算導數,可以調用Variable上的.backward()。如果變量是標量(只有一個元素),你不需要為backward()確定任何參數。但是,如果它有多個元素,你需要確定grad_output參數(這是一個具有匹配形狀的tensor)。

import torch
from torch.autograd import Variable

創(chuàng)建一個變量:

x = Variable(torch.ones(2, 2), requires_grad=True)
print(x)

對變量做一個運算:

y = x + 2
print(y)

y作為一個運算的結果被創(chuàng)建,所以它有grad_fn。

print(y.grad_fn)

在y上做更多的運算:

z = y * y * 3
out = z.mean()

print(z, out)

2 梯度(Gradients)

現在來做反向傳播。out.backward()等價于out.backward(torch.Tensor([1.0]))。

out.backward()

打印梯度 d(out)/dx

print(x.grad)

你應該會得到一個元素為4.5的矩陣。

你可以使用autograd做很多瘋狂的事情。

x = torch.randn(3)
x = Variable(x, requires_grad=True)

y = x * 2
while y.data.norm() < 1000:
    y = y * 2

print(y)
gradients = torch.FloatTensor([0.1, 1.0, 0.0001])
y.backward(gradients)

print(x.grad)

責任編輯:xj

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯系本站處理。 舉報投訴
  • 神經網絡
    +關注

    關注

    42

    文章

    4814

    瀏覽量

    103631
  • 深度學習
    +關注

    關注

    73

    文章

    5561

    瀏覽量

    122796
  • pytorch
    +關注

    關注

    2

    文章

    809

    瀏覽量

    13963
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    操作指南:pytorch云服務器怎么設置?

    GPU加速和并行計算優(yōu)化。完成后,定期監(jiān)測資源使用情況以優(yōu)化配置。設置PyTorch云服務器需要一系列步驟,以下是UU云小編整理的操作指南:
    的頭像 發(fā)表于 02-08 10:33 ?358次閱讀

    利用Arm Kleidi技術實現PyTorch優(yōu)化

    PyTorch 是一個廣泛應用的開源機器學習 (ML) 庫。近年來,Arm 與合作伙伴通力協(xié)作,持續(xù)改進 PyTorch 的推理性能。本文將詳細介紹如何利用 Arm Kleidi 技術提升 Arm
    的頭像 發(fā)表于 12-23 09:19 ?1059次閱讀
    利用Arm Kleidi技術實現<b class='flag-5'>PyTorch</b>優(yōu)化

    Arm KleidiAI助力提升PyTorch上LLM推理性能

    熱門的深度學習框架尤為突出,許多企業(yè)均會選擇其作為開發(fā) AI 應用的庫。通過部署 Arm Kleidi 技術,Arm 正在努力優(yōu)化 PyTorch,以加速在基于 Arm 架構的處理器上運行 LLM 的性能。Arm 通過將 Kle
    的頭像 發(fā)表于 12-03 17:05 ?1489次閱讀
    Arm KleidiAI助力提升<b class='flag-5'>PyTorch</b>上LLM推理性能

    PyTorch 2.5.1: Bugs修復版發(fā)布

    ? 一,前言 在深度學習框架的不斷迭代中,PyTorch 社區(qū)始終致力于提供更穩(wěn)定、更高效的工具。最近,PyTorch 2.5.1 版本正式發(fā)布,這個版本主要針對 2.5.0 中發(fā)現的
    的頭像 發(fā)表于 12-03 16:11 ?1622次閱讀
    <b class='flag-5'>PyTorch</b> 2.5.1: Bugs修復版發(fā)布

    PyTorch GPU 加速訓練模型方法

    深度學習領域,GPU加速訓練模型已經成為提高訓練效率和縮短訓練時間的重要手段。PyTorch作為一個流行的深度學習框架,提供了豐富的工具和
    的頭像 發(fā)表于 11-05 17:43 ?1410次閱讀

    PyTorch 數據加載與處理方法

    PyTorch 是一個流行的開源機器學習庫,它提供了強大的工具來構建和訓練深度學習模型。在構建模型之前,一個重要的步驟是加載和處理數據。 1. Py
    的頭像 發(fā)表于 11-05 17:37 ?937次閱讀

    如何在 PyTorch 中訓練模型

    PyTorch 是一個流行的開源機器學習庫,廣泛用于計算機視覺和自然語言處理等領域。它提供了強大的計算圖功能和動態(tài)圖特性,使得模型的構建和調試變得更加靈活和直觀。 數據準備 在訓練模型
    的頭像 發(fā)表于 11-05 17:36 ?931次閱讀

    如何使用 PyTorch 進行強化學習

    計算圖和自動微分功能,非常適合實現復雜的強化學習算法。 1. 環(huán)境(Environment) 在強化學習中,環(huán)境是一個抽象的概念,它定義了智能體(agent)可以執(zhí)行的動作(acti
    的頭像 發(fā)表于 11-05 17:34 ?1043次閱讀

    Pytorch深度學習訓練的方法

    掌握這 17 種方法,用最省力的方式,加速你的 Pytorch 深度學習訓練。
    的頭像 發(fā)表于 10-28 14:05 ?658次閱讀
    <b class='flag-5'>Pytorch</b><b class='flag-5'>深度</b><b class='flag-5'>學習</b>訓練的方法

    新手小白怎么通過云服務器跑pytorch?

    安裝PyTorch的步驟可以根據不同的操作系統(tǒng)和需求有所差異,通過云服務器運行PyTorch的過程主要包括選擇GPU云服務器平臺、配置服務器環(huán)境、部署和運行PyTorch模型、優(yōu)化性能等步驟。
    的頭像 發(fā)表于 09-25 11:35 ?566次閱讀

    pycharm配置pytorch運行環(huán)境

    在PyCharm中配置PyTorch運行環(huán)境主要包括安裝PyCharm、安裝Python(如果尚未安裝)、配置PyTorch環(huán)境以及驗證安裝等步驟。以下是詳細的步驟說明: 一、安裝PyCharm
    的頭像 發(fā)表于 08-01 16:25 ?2439次閱讀

    pytorch怎么在pycharm中運行

    第一部分:PyTorch和PyCharm的安裝 1.1 安裝PyTorch PyTorch是一個開源的機器學習庫,用于構建和訓練神經網絡。要在PyCharm中使用
    的頭像 發(fā)表于 08-01 16:22 ?2550次閱讀

    pycharm如何調用pytorch

    引言 PyTorch是一個開源的機器學習庫,廣泛用于計算機視覺、自然語言處理等領域。PyCharm是一個流行的Python集成開發(fā)環(huán)境(IDE),提供了代碼編輯、調試、測試等功能。將PyTor
    的頭像 發(fā)表于 08-01 15:41 ?1225次閱讀

    pytorch環(huán)境搭建詳細步驟

    PyTorch作為一個廣泛使用的深度學習框架,其環(huán)境搭建對于從事機器學習深度學習研究及開發(fā)的人
    的頭像 發(fā)表于 08-01 15:38 ?1869次閱讀

    pytorch和python的關系是什么

    ,PyTorch已經成為了一個非常受歡迎的框架。本文將介紹PyTorch和Python之間的關系,以及它們在深度學習領域的應用。 Python簡介 Python是一種高級、解釋型、通用
    的頭像 發(fā)表于 08-01 15:27 ?3284次閱讀