99精品伊人亚洲|最近国产中文炮友|九草在线视频支援|AV网站大全最新|美女黄片免费观看|国产精品资源视频|精彩无码视频一区|91大神在线后入|伊人终合在线播放|久草综合久久中文

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

UCR學(xué)者用漩渦實(shí)現(xiàn)混合計(jì)算機(jī)視覺(jué)系統(tǒng)

新機(jī)器視覺(jué) ? 來(lái)源:機(jī)器之心 ? 作者:機(jī)器之心 ? 2020-12-31 09:29 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

在本文中,來(lái)自加州大學(xué)河濱分校機(jī)械工程系的研究者通過(guò)應(yīng)用光學(xué)漩渦證明了混合計(jì)算機(jī)視覺(jué)系統(tǒng)的可行性。該研究為光子學(xué)在構(gòu)建通用的小腦混合神經(jīng)網(wǎng)絡(luò)和開(kāi)發(fā)用于大數(shù)據(jù)分析的實(shí)時(shí)硬件方面的作用提供了新見(jiàn)解。

從醫(yī)學(xué)診斷到自動(dòng)駕駛再到人臉識(shí)別,圖像分析在現(xiàn)代技術(shù)中無(wú)處不在。使用深度學(xué)習(xí)卷積神經(jīng)網(wǎng)絡(luò)的計(jì)算機(jī)徹底改變了計(jì)算機(jī)視覺(jué)。但卷積神經(jīng)網(wǎng)絡(luò)(convolutional neural network,CNN)通過(guò)從預(yù)訓(xùn)練數(shù)據(jù)中學(xué)習(xí)來(lái)對(duì)圖像進(jìn)行分類,然而這些數(shù)據(jù)通常會(huì)記住或發(fā)展某些偏見(jiàn)。此外,數(shù)據(jù)還易于受到對(duì)抗性攻擊(以極細(xì)微且?guī)缀醪煊X(jué)不到的圖像扭曲出現(xiàn))的干擾,從而導(dǎo)致做出錯(cuò)誤的決策。這些缺點(diǎn)限制了卷積神經(jīng)網(wǎng)絡(luò)的用途。 提升圖像處理算法能效和可靠性的一種方法是將常規(guī)計(jì)算機(jī)視覺(jué)與光學(xué)預(yù)處理器結(jié)合起來(lái)。這種混合系統(tǒng)可以用最少的電子硬件工作。由于光在預(yù)處理階段即可完成數(shù)學(xué)函數(shù)而不會(huì)耗散能量,因此使用混合計(jì)算機(jī)視覺(jué)系統(tǒng)可以節(jié)省大量時(shí)間和能源。這種新方法能夠克服深度學(xué)習(xí)的缺點(diǎn),并充分利用光學(xué)和電子學(xué)的優(yōu)勢(shì)。

今年 8 月份,在一篇發(fā)表于 Optica 的論文中,加州大學(xué)河濱分校機(jī)械工程系助理教授 Luat Vuong 和博士生 Baurzhan Muminov 通過(guò)應(yīng)用光學(xué)漩渦(具有深色中心點(diǎn)的旋繞光波),證明了混合計(jì)算機(jī)視覺(jué)系統(tǒng)的可行性。光學(xué)漩渦可以比喻為光繞著邊緣和角落傳播時(shí)產(chǎn)生的流體動(dòng)力漩渦。

論文鏈接:https://www.osapublishing.org/optica/fulltext.cfm?uri=optica-7-9-1079&id=437484 研究表明,光學(xué)預(yù)處理可以降低圖像計(jì)算的功耗,而電子設(shè)備中的數(shù)字信號(hào)識(shí)別相關(guān)性,提供優(yōu)化并快速計(jì)算可靠的決策閾值。借助混合計(jì)算機(jī)視覺(jué),光學(xué)器件具有速度和低功耗計(jì)算的優(yōu)勢(shì),并且比 CNN 的時(shí)間成本降低了 2 個(gè)數(shù)量級(jí)。通過(guò)圖像壓縮,則有可能從存儲(chǔ)和計(jì)算復(fù)雜性兩方面大幅減少電子后端硬件。 Luat Vuong 表示:「本研究中的漩渦編碼器表明,光學(xué)預(yù)處理可以消除對(duì) CNN 的需求,比 CNN 更具魯棒性,并且能夠泛化逆問(wèn)題的解決方法。

例如當(dāng)混合神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)手寫(xiě)數(shù)字的形狀時(shí),它可以重建以前從未見(jiàn)過(guò)的阿拉伯或日語(yǔ)字符?!?該論文還表明,將圖像縮小為更少的高強(qiáng)度像素能夠?qū)崿F(xiàn)極弱光線條件下的圖像處理。該研究為光子學(xué)在構(gòu)建通用的小腦混合神經(jīng)網(wǎng)絡(luò)和開(kāi)發(fā)用于大數(shù)據(jù)分析的實(shí)時(shí)硬件方面的作用提供了新見(jiàn)解。 論文內(nèi)容簡(jiǎn)述 深度學(xué)習(xí)卷積神經(jīng)網(wǎng)絡(luò)通常涉及具有較高計(jì)算成本的多層、前向 - 后向傳播機(jī)器學(xué)習(xí)算法。所以,在本文中,研究者展示了卷積神經(jīng)網(wǎng)絡(luò)的替代方案,該方案從其光學(xué)預(yù)處理、傅里葉編碼模式中重建原始圖像。該方案對(duì)計(jì)算的需求少得多,并且具有更高的噪聲魯棒性,因此適用于高速和弱光照條件下的成像。 具體而言,該研究引入帶有微透鏡陣列的漩渦相位變換,以及淺層密集的「小腦」神經(jīng)網(wǎng)絡(luò)結(jié)合。單次編碼孔徑方法利用了傅里葉變換螺旋相位梯度的相干衍射、緊湊表征和邊緣增強(qiáng)。使用漩渦編碼可以訓(xùn)練小腦對(duì)圖像進(jìn)行去卷積操作,其速度比使用隨機(jī)編碼方案快 5 至 20 倍,且在存在噪聲的情況下獲得了更大的優(yōu)勢(shì)。

一旦訓(xùn)練完成,小腦就可以從 intensity-only 的數(shù)據(jù)中重建對(duì)象,從而解決了逆映射問(wèn)題,而無(wú)需在每個(gè)圖像上執(zhí)行迭代,也無(wú)需深度學(xué)習(xí)方案。通過(guò)漩渦傅立葉編碼,研究者在 15W CPU 上以每秒幾千幀的速度重建以低光通量(5nJ / cm^2)照明的 MNIST Fashion 對(duì)象。最終,研究者證明了使用漩渦編碼器進(jìn)行傅立葉光學(xué)預(yù)處理在達(dá)到相似準(zhǔn)確率的情況下,速度比卷積神經(jīng)網(wǎng)絡(luò)快 2 個(gè)數(shù)量級(jí)。 漩渦的知識(shí)可以擴(kuò)展為理解任意波型。當(dāng)帶有漩渦時(shí),光學(xué)圖像數(shù)據(jù)會(huì)以突出顯示并混合光學(xué)圖像不同部分的方式實(shí)現(xiàn)傳播。研究者指出,使用淺層「小腦」神經(jīng)網(wǎng)絡(luò)進(jìn)行的漩渦圖像預(yù)處理(僅需運(yùn)行幾層算法)就可以代替 CNN 發(fā)揮作用。 Vuong 還表示:「光學(xué)漩渦的獨(dú)特優(yōu)勢(shì)在于其數(shù)學(xué)和邊緣增強(qiáng)功能。在本文中,我們證明了,光學(xué)漩渦編碼器能夠以類似于一種小腦神經(jīng)網(wǎng)絡(luò)從其光學(xué)預(yù)處理模式快速重建原始圖像的方式生成目標(biāo)強(qiáng)度數(shù)據(jù)?!?方法

圖 1 描述了該研究的成像方案,其中對(duì)象 F(r,Φ) 的多個(gè)圖像被收集到傅立葉域中:透過(guò)每個(gè)微透鏡的光由不同的漩渦和透鏡 mask 模式 M_m(r,Φ) 調(diào)制;攝像機(jī)檢測(cè)到菲涅耳(Fresnel)傳播、漩渦傅里葉變換(vortex-Fourier-transformed)強(qiáng)度模式的縮放模平方圖像

。 其中,m 是漩渦拓?fù)潆姾?,r 和Φ是實(shí)域柱面坐標(biāo),而 u 和 v 是傅里葉平面笛卡爾坐標(biāo)。漩渦傅里葉強(qiáng)度模式 F^~ 集中在相對(duì)較小的區(qū)域中,但隨著 m 的增加,通常會(huì)呈越來(lái)越寬的甜甜圈形(圖 1(b))。對(duì)象「實(shí)域」中的漩渦相位在空間上編碼并破壞了傅立葉變換強(qiáng)度模式的平移不變性,如圖 1(c) 所示。 此外,該研究將一些小圖像數(shù)據(jù)集視為對(duì)象輸入,并比較 F(r,Φ) 中的不同表征。對(duì)于每個(gè)正實(shí)值數(shù)據(jù)集圖像 X,相位變化的映射如下公式所示:

其中,α_0 是對(duì)象相位移動(dòng)的動(dòng)態(tài)范圍。這種映射很方便,因?yàn)?a target="_blank">信號(hào)功率不隨選擇的 X 改變。研究者還考慮了 X 閉塞或吸收信號(hào)時(shí)不透明對(duì)象,即,這會(huì)產(chǎn)生相似的趨勢(shì)。 歸根結(jié)底,該研究有三項(xiàng)主要?jiǎng)?chuàng)新:(1)用漩渦透鏡進(jìn)行光譜特征的邊緣增強(qiáng);(2)在沒(méi)有相似學(xué)得數(shù)據(jù)集的情況下對(duì)圖像進(jìn)行快速逆重建;(3)取決于層激活的抗噪聲能力。

原文標(biāo)題:光學(xué)預(yù)處理與計(jì)算機(jī)視覺(jué)結(jié)合,UCR學(xué)者用漩渦實(shí)現(xiàn)混合計(jì)算機(jī)視覺(jué)系統(tǒng)

文章出處:【微信公眾號(hào):新機(jī)器視覺(jué)】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

責(zé)任編輯:haq

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴

原文標(biāo)題:光學(xué)預(yù)處理與計(jì)算機(jī)視覺(jué)結(jié)合,UCR學(xué)者用漩渦實(shí)現(xiàn)混合計(jì)算機(jī)視覺(jué)系統(tǒng)

文章出處:【微信號(hào):vision263com,微信公眾號(hào):新機(jī)器視覺(jué)】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    Arm KleidiCV與OpenCV集成助力移動(dòng)端計(jì)算機(jī)視覺(jué)性能優(yōu)化

    等多種應(yīng)用中。然而,這些計(jì)算機(jī)視覺(jué)應(yīng)用可能很難實(shí)現(xiàn)最優(yōu)化的延遲性能和處理速度,特別是在內(nèi)存大小、電池容量和處理能力有限的移動(dòng)設(shè)備上難度更高。 而 Arm KleidiCV 便能在其中大顯身手。該開(kāi)源庫(kù)利用了最新 Arm CPU
    的頭像 發(fā)表于 02-24 10:15 ?564次閱讀

    AR和VR中的計(jì)算機(jī)視覺(jué)

    ):計(jì)算機(jī)視覺(jué)引領(lǐng)混合現(xiàn)實(shí)體驗(yàn)增強(qiáng)現(xiàn)實(shí)(AR)和虛擬現(xiàn)實(shí)(VR)正在徹底改變我們與外部世界的互動(dòng)方式。即便是在引人入勝的沉浸式
    的頭像 發(fā)表于 02-08 14:29 ?1558次閱讀
    AR和VR中的<b class='flag-5'>計(jì)算機(jī)</b><b class='flag-5'>視覺(jué)</b>

    【小白入門(mén)必看】一文讀懂深度學(xué)習(xí)計(jì)算機(jī)視覺(jué)技術(shù)及學(xué)習(xí)路線

    一、什么是計(jì)算機(jī)視覺(jué)?計(jì)算機(jī)視覺(jué),其實(shí)就是教機(jī)器怎么像我們?nèi)艘粯樱?b class='flag-5'>用攝像頭看看周圍的世界,然后理解它。比如說(shuō),它能認(rèn)出這是個(gè)蘋(píng)果,或者那邊有
    的頭像 發(fā)表于 10-31 17:00 ?1236次閱讀
    【小白入門(mén)必看】一文讀懂深度學(xué)習(xí)<b class='flag-5'>計(jì)算機(jī)</b><b class='flag-5'>視覺(jué)</b>技術(shù)及學(xué)習(xí)路線

    云端超級(jí)計(jì)算機(jī)怎么

    云端超級(jí)計(jì)算機(jī)是一種基于云計(jì)算的高性能計(jì)算服務(wù),它將大量計(jì)算資源和存儲(chǔ)資源集中在一起,通過(guò)網(wǎng)絡(luò)向用戶提供按需的計(jì)算服務(wù)。
    的頭像 發(fā)表于 10-18 10:14 ?478次閱讀

    ARMxy嵌入式計(jì)算機(jī)在機(jī)器視覺(jué)中的卓越表現(xiàn)

    嵌入式視覺(jué)是指在嵌入式系統(tǒng)中使用計(jì)算機(jī)視覺(jué)技術(shù),與經(jīng)常所說(shuō)的機(jī)器視覺(jué)系統(tǒng)的區(qū)別在于嵌入式視覺(jué)系統(tǒng)
    的頭像 發(fā)表于 10-10 14:47 ?544次閱讀
    ARMxy嵌入式<b class='flag-5'>計(jì)算機(jī)</b>在機(jī)器<b class='flag-5'>視覺(jué)</b>中的卓越表現(xiàn)

    計(jì)算機(jī)存儲(chǔ)系統(tǒng)的工作原理和功能

    計(jì)算機(jī)存儲(chǔ)系統(tǒng)作為計(jì)算機(jī)系統(tǒng)中至關(guān)重要的組成部分,其原理和功能對(duì)于理解計(jì)算機(jī)的運(yùn)行機(jī)制具有關(guān)鍵意義。以下將詳細(xì)闡述計(jì)算機(jī)存儲(chǔ)
    的頭像 發(fā)表于 09-26 16:42 ?2941次閱讀

    計(jì)算機(jī)存儲(chǔ)系統(tǒng)的構(gòu)成

    計(jì)算機(jī)存儲(chǔ)系統(tǒng)計(jì)算機(jī)中用于存放程序和數(shù)據(jù)的設(shè)備或部件的集合,它構(gòu)成了計(jì)算機(jī)信息處理的基礎(chǔ)。一個(gè)完整的計(jì)算機(jī)存儲(chǔ)
    的頭像 發(fā)表于 09-26 15:25 ?2528次閱讀

    計(jì)算機(jī)系統(tǒng)的硬件組成和主要部件

    計(jì)算機(jī)系統(tǒng)的硬件組成是計(jì)算機(jī)運(yùn)行的基礎(chǔ),它包含了多個(gè)關(guān)鍵部件,這些部件相互協(xié)作,共同實(shí)現(xiàn)計(jì)算機(jī)的各種功能。
    的頭像 發(fā)表于 09-10 11:41 ?6849次閱讀

    簡(jiǎn)述計(jì)算機(jī)總線的分類

    計(jì)算機(jī)總線作為計(jì)算機(jī)系統(tǒng)中連接各個(gè)功能部件的公共通信干線,其結(jié)構(gòu)和分類對(duì)于理解計(jì)算機(jī)硬件系統(tǒng)的工作原理至關(guān)重要。以下是對(duì)計(jì)算機(jī)總線結(jié)構(gòu)和分類
    的頭像 發(fā)表于 08-26 16:23 ?5168次閱讀

    微處理器如何控制計(jì)算機(jī)系統(tǒng)

    微處理器,作為計(jì)算機(jī)系統(tǒng)的核心部件,承擔(dān)著控制整個(gè)計(jì)算機(jī)系統(tǒng)運(yùn)行的重要任務(wù)。它不僅是計(jì)算機(jī)的運(yùn)算中心,還是控制中心,負(fù)責(zé)執(zhí)行程序指令、處理數(shù)據(jù)以及協(xié)調(diào)計(jì)算機(jī)各部件之間的工作。以下將詳細(xì)
    的頭像 發(fā)表于 08-22 14:21 ?975次閱讀

    計(jì)算機(jī)視覺(jué)有哪些優(yōu)缺點(diǎn)

    計(jì)算機(jī)視覺(jué)作為人工智能領(lǐng)域的一個(gè)重要分支,旨在使計(jì)算機(jī)能夠像人類一樣理解和解釋圖像和視頻中的信息。這一技術(shù)的發(fā)展不僅推動(dòng)了多個(gè)行業(yè)的變革,也帶來(lái)了諸多優(yōu)勢(shì),但同時(shí)也伴隨著一些挑戰(zhàn)和局限性。以下是對(duì)
    的頭像 發(fā)表于 08-14 09:49 ?2035次閱讀

    計(jì)算機(jī)系統(tǒng)的組成和功能

    計(jì)算機(jī)系統(tǒng)是一個(gè)復(fù)雜而龐大的概念,它涵蓋了計(jì)算機(jī)硬件、軟件以及它們之間相互作用的所有元素。為了全面而深入地探討計(jì)算機(jī)系統(tǒng),本文將從定義、組成、功能、發(fā)展歷程以及未來(lái)趨勢(shì)等方面進(jìn)行詳細(xì)闡述。
    的頭像 發(fā)表于 07-24 17:41 ?2390次閱讀

    計(jì)算機(jī)視覺(jué)技術(shù)的AI算法模型

    計(jì)算機(jī)視覺(jué)技術(shù)作為人工智能領(lǐng)域的一個(gè)重要分支,旨在使計(jì)算機(jī)能夠像人類一樣理解和解釋圖像及視頻中的信息。為了實(shí)現(xiàn)這一目標(biāo),計(jì)算機(jī)
    的頭像 發(fā)表于 07-24 12:46 ?1802次閱讀

    什么是機(jī)器視覺(jué)opencv?它有哪些優(yōu)勢(shì)?

    機(jī)器視覺(jué)(Machine Vision)是一種利用計(jì)算機(jī)和圖像處理技術(shù)來(lái)模擬人類視覺(jué)系統(tǒng)的功能,實(shí)現(xiàn)對(duì)圖像的識(shí)別、分析和理解的技術(shù)。OpenCV(Open Source Compute
    的頭像 發(fā)表于 07-16 10:33 ?1352次閱讀

    機(jī)器視覺(jué)計(jì)算機(jī)視覺(jué)有什么區(qū)別

    機(jī)器視覺(jué)計(jì)算機(jī)視覺(jué)是兩個(gè)密切相關(guān)但又有所區(qū)別的概念。 一、定義 機(jī)器視覺(jué) 機(jī)器視覺(jué),又稱為計(jì)算機(jī)
    的頭像 發(fā)表于 07-16 10:23 ?1162次閱讀