99精品伊人亚洲|最近国产中文炮友|九草在线视频支援|AV网站大全最新|美女黄片免费观看|国产精品资源视频|精彩无码视频一区|91大神在线后入|伊人终合在线播放|久草综合久久中文

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

深圳先進院等提出基于卷積神經(jīng)網(wǎng)絡(luò)的低劑量光聲成像方法

MEMS ? 來源:MEMS ? 作者:MEMS ? 2020-12-28 16:06 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

近日,中國科學院深圳先進技術(shù)研究院生物醫(yī)學與健康工程研究所生物醫(yī)學光學與分子影像中心研究員劉成波團隊、醫(yī)學人工智能研究中心研究員梁棟團隊,與武漢協(xié)和醫(yī)院放射科教授鄭傳勝團隊合作,提出基于卷積神經(jīng)網(wǎng)絡(luò)的低劑量光聲成像方法,該方法有望推動光聲成像技術(shù)進一步臨床轉(zhuǎn)化。

光聲成像能夠無創(chuàng)獲取生物體和人體高分辨形態(tài)和功能信息,是有可能取得重要進展的新一代醫(yī)學成像技術(shù)。受激光安全局限,生物組織允許承受的激光能量有限,特別是在高速成像,激光能量安全性是目前制約這一技術(shù)發(fā)展的瓶頸。激光劑量、成像速度、圖像質(zhì)量在光聲成像中相互制約,阻礙了該技術(shù)在臨床和基礎(chǔ)研究的應(yīng)用,迄今為止,仍缺少較好的解決方法。

研究團隊提出一種多任務(wù)殘差密集網(wǎng)絡(luò)(multi-task residual dense network, MT-RDN)的卷積神經(jīng)網(wǎng)絡(luò)方法,較好解決了這一問題。利用多監(jiān)督學習策略,挖掘光聲光譜域互補信息,基于雙通道網(wǎng)絡(luò)和自適應(yīng)權(quán)重分布,團隊實現(xiàn)了低劑量激光照射下高質(zhì)量成像,獲得了比激光安全閾值低32倍的超低劑量光聲圖像。為滿足神經(jīng)網(wǎng)絡(luò)需要的多波長、多劑量數(shù)據(jù)同時獲取,團隊在光聲成像技術(shù)方面開展創(chuàng)新,實現(xiàn)了四激光脈沖連續(xù)成像。該研究有望進一步推動光聲成像技術(shù)臨床應(yīng)用,特別是在低激光劑量、高速成像場景。

上方為光聲成像系統(tǒng)示意圖,下方由左到右依次為雙波長輸入圖像、多任務(wù)殘差密集網(wǎng)絡(luò)框架、和卷積神經(jīng)網(wǎng)絡(luò)輸出圖像

相關(guān)研究成果以Deep learning enables superior photoacoustic imaging at ultra-low laser dosages為題,發(fā)表在Advanced Science上。武漢協(xié)和醫(yī)院趙煌旋博士(深圳先進院客座學生)趙煌旋、深圳先進院博士生柯子文為論文的第一作者,劉成波、梁棟和鄭傳勝為論文的共同通訊作者。

研究工作得到國家自然科學基金重大研究計劃、國家自然科學基金面上項目、中科院科研儀器設(shè)備研制項目(關(guān)鍵技術(shù)團隊項目)、中科院科研儀器設(shè)備研制項目(青年人才類)、中科院青年創(chuàng)新促進會等的支持。

責任編輯:xj

原文標題:深圳先進院等在低劑量光聲成像研究中取得進展

文章出處:【微信公眾號:MEMS】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 成像
    +關(guān)注

    關(guān)注

    2

    文章

    260

    瀏覽量

    30947
  • 光聲
    +關(guān)注

    關(guān)注

    0

    文章

    11

    瀏覽量

    6972

原文標題:深圳先進院等在低劑量光聲成像研究中取得進展

文章出處:【微信號:MEMSensor,微信公眾號:MEMS】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    無刷電機小波神經(jīng)網(wǎng)絡(luò)轉(zhuǎn)子位置檢測方法的研究

    MATLAB/SIMULINK工具對該方法進行驗證,實驗結(jié)果表明該方法在全程速度下效果良好。 純分享帖,點擊下方附件免費獲取完整資料~~~ *附件:無刷電機小波神經(jīng)網(wǎng)絡(luò)轉(zhuǎn)子位置檢測方法
    發(fā)表于 06-25 13:06

    神經(jīng)網(wǎng)絡(luò)專家系統(tǒng)在電機故障診斷中的應(yīng)用

    摘要:針對傳統(tǒng)專家系統(tǒng)不能進行自學習、自適應(yīng)的問題,本文提出了基于種經(jīng)網(wǎng)絡(luò)專家系統(tǒng)的并步電機故障診斷方法。本文將小波神經(jīng)網(wǎng)絡(luò)和專家系統(tǒng)相結(jié)合,充分發(fā)揮了二者故障診斷的優(yōu)點,很大程度上降
    發(fā)表于 06-16 22:09

    BP神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)的比較

    BP神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)在多個方面存在顯著差異,以下是對兩者的比較: 一、結(jié)構(gòu)特點 BP神經(jīng)網(wǎng)絡(luò) : BP神經(jīng)網(wǎng)絡(luò)是一種多層的前饋
    的頭像 發(fā)表于 02-12 15:53 ?674次閱讀

    什么是BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法

    BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法(Backpropagation Algorithm)是一種用于訓(xùn)練神經(jīng)網(wǎng)絡(luò)的有效方法。以下是關(guān)于BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法的介紹: 一、基本概念 反向傳播算
    的頭像 發(fā)表于 02-12 15:18 ?776次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法

    在上一篇文章中,我們介紹了傳統(tǒng)機器學習的基礎(chǔ)知識和多種算法。在本文中,我們會介紹人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法,供各位老師選擇。 01 人工神經(jīng)網(wǎng)絡(luò) ? 人工
    的頭像 發(fā)表于 01-09 10:24 ?1212次閱讀
    人工<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>架構(gòu)<b class='flag-5'>方法</b>

    卷積神經(jīng)網(wǎng)絡(luò)的實現(xiàn)工具與框架

    卷積神經(jīng)網(wǎng)絡(luò)因其在圖像和視頻處理任務(wù)中的卓越性能而廣受歡迎。隨著深度學習技術(shù)的快速發(fā)展,多種實現(xiàn)工具和框架應(yīng)運而生,為研究人員和開發(fā)者提供了強大的支持。 TensorFlow 概述
    的頭像 發(fā)表于 11-15 15:20 ?672次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的參數(shù)調(diào)整方法

    卷積神經(jīng)網(wǎng)絡(luò)因其在處理具有空間層次結(jié)構(gòu)的數(shù)據(jù)時的卓越性能而受到青睞。然而,CNN的成功很大程度上依賴于其參數(shù)的合理設(shè)置。參數(shù)調(diào)整是一個復(fù)雜的過程,涉及到多個超參數(shù)的選擇和優(yōu)化。 網(wǎng)絡(luò)架構(gòu)參數(shù)
    的頭像 發(fā)表于 11-15 15:10 ?1216次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)在自然語言處理中的應(yīng)用

    自然語言處理是人工智能領(lǐng)域的一個重要分支,它致力于使計算機能夠理解、解釋和生成人類語言。隨著深度學習技術(shù)的發(fā)展,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)作為一種強大的模型,在圖像識別和語音處理領(lǐng)域取得了顯著成果
    的頭像 發(fā)表于 11-15 14:58 ?807次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的比較

    在深度學習領(lǐng)域,神經(jīng)網(wǎng)絡(luò)模型被廣泛應(yīng)用于各種任務(wù),如圖像識別、自然語言處理和游戲智能。其中,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)是兩種常
    的頭像 發(fā)表于 11-15 14:53 ?1881次閱讀

    深度學習中的卷積神經(jīng)網(wǎng)絡(luò)模型

    深度學習近年來在多個領(lǐng)域取得了顯著的進展,尤其是在圖像識別、語音識別和自然語言處理等方面。卷積神經(jīng)網(wǎng)絡(luò)作為深度學習的一個分支,因其在圖像處理任務(wù)中的卓越性能而受到廣泛關(guān)注。 卷積神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 11-15 14:52 ?848次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的基本原理與算法

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,CNN)是一類包含卷積計算且具有深度結(jié)構(gòu)的前饋神經(jīng)網(wǎng)絡(luò)(Feedforward Neural Networks
    的頭像 發(fā)表于 11-15 14:47 ?1787次閱讀

    基于LSTM神經(jīng)網(wǎng)絡(luò)的情感分析方法

    情感分析是自然語言處理(NLP)領(lǐng)域的一項重要任務(wù),旨在識別和提取文本中的主觀信息,如情感傾向、情感強度。隨著深度學習技術(shù)的發(fā)展,基于LSTM(長短期記憶)神經(jīng)網(wǎng)絡(luò)的情感分析方法因其出色的序列建模
    的頭像 發(fā)表于 11-13 10:15 ?1283次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)的訓(xùn)練數(shù)據(jù)準備方法

    LSTM(Long Short-Term Memory,長短期記憶)神經(jīng)網(wǎng)絡(luò)的訓(xùn)練數(shù)據(jù)準備方法是一個關(guān)鍵步驟,它直接影響到模型的性能和效果。以下是一些關(guān)于LSTM神經(jīng)網(wǎng)絡(luò)訓(xùn)練數(shù)據(jù)準備的建議和
    的頭像 發(fā)表于 11-13 10:08 ?2131次閱讀

    關(guān)于卷積神經(jīng)網(wǎng)絡(luò),這些概念你厘清了么~

    這個小型網(wǎng)絡(luò),用于描述網(wǎng)絡(luò)的方程中也具有32個偏置和32個權(quán)重。 CIFAR神經(jīng)網(wǎng)絡(luò)是一種廣泛用于圖像識別的CNN。它主要由兩種類型的層組成:卷積層和池化層,這兩種層分別使用
    發(fā)表于 10-24 13:56

    SD NAND芯片的測評與使用 基于卷積神經(jīng)網(wǎng)絡(luò)的數(shù)字識別

    目錄 前言: 簡介: 對照: 測試: 使用: 照片存儲: 基于卷積神經(jīng)網(wǎng)絡(luò)的數(shù)字識別: ———————————————— 前言: 感謝深圳雷龍公司寄送的樣品,其中包括兩張2代的4gbit
    的頭像 發(fā)表于 07-24 18:08 ?1801次閱讀