99精品伊人亚洲|最近国产中文炮友|九草在线视频支援|AV网站大全最新|美女黄片免费观看|国产精品资源视频|精彩无码视频一区|91大神在线后入|伊人终合在线播放|久草综合久久中文

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

tensorflow能做什么_tensorflow2.0和1.0區(qū)別

姚小熊27 ? 來源:網(wǎng)絡(luò)整理 ? 作者:網(wǎng)絡(luò)整理 ? 2020-12-04 14:45 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

tensorflow能做什么

TensorFlow是谷歌基于DistBelief進(jìn)行研發(fā)的第二代人工智能學(xué)習(xí)系統(tǒng),其命名來源于本身的運(yùn)行原理。Tensor (張量)意味著N維數(shù)組, Flow (流)意味著基于數(shù)據(jù)流圖的計(jì)算, TensorFlow為張量從流圖的一-端流動到另一端計(jì) 算過程。TensorFlow是將 復(fù)雜的數(shù)據(jù)結(jié)構(gòu)傳輸至人工智能神經(jīng)網(wǎng)中進(jìn)行分析和處理過程的系統(tǒng)。TensorFlow可被用于語音識別或圖像識別等多項(xiàng)機(jī)器學(xué)習(xí)深度學(xué)習(xí)領(lǐng)域,對2011年開發(fā)的深度學(xué)習(xí)基礎(chǔ)架構(gòu)DistBelief進(jìn)行了各方面的改進(jìn),它可在小到一部智能手機(jī)、 大到數(shù)千臺數(shù)據(jù)中心服務(wù)器的各種設(shè)備上運(yùn)行。TensorFlow將完全開源,任何人都可以用。

tensorflow的作用有:

1、圖像風(fēng)格轉(zhuǎn)換,可以生成各種有意思的圖片。

2、給素描黑白畫,自動上色。

3、圖像描述。

4、人臉方面:推薦猜年齡的應(yīng)用。

5、reinforcementlearning (強(qiáng)化學(xué)習(xí))等等。

tensorflow2.0和1.0區(qū)別

今天小編就為大家分享一篇tensorflow2.0與tensorflow1.0的性能區(qū)別介紹,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧。

從某種意義講,tensorflow這個項(xiàng)目已經(jīng)失敗了,要不了幾年以后,江湖上再無tensorflow

因?yàn)閠ensorflow2.0 和tensorflow1.0 從本質(zhì)上講就是兩個項(xiàng)目,1.0的靜態(tài)圖有他的優(yōu)勢,比如性能方面,但是debug不方便,2.0的動態(tài)圖就是在模仿pytorch,但是畫虎不成反類犬.

為了對比1.0 與2.0

1. pip install tensorflow==2.0.0a0

2. 為了控制變量我把mnist保存到本地的mongodb

3. 兩種網(wǎng)絡(luò)結(jié)構(gòu)是一樣的

tensorflow2.0 耗時20.7秒

tensorflow2.0 耗時12.46秒,所以在用cpu 做訓(xùn)練時,相同的網(wǎng)絡(luò)結(jié)構(gòu),相同的數(shù)據(jù)集合,tensorflow2.0比tensorflow1.0慢60%,tensorflow 靜態(tài)圖有非常明顯的速度優(yōu)勢.

這是tensorflow2.0 在訓(xùn)練時的cpu占用32.3%

這是tensorflow1.0 在訓(xùn)練時的cpu占用63%,這也是tensorflow1.0 的優(yōu)勢,更能發(fā)揮硬件的優(yōu)勢。

責(zé)任編輯:YYX

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴
  • 人工智能
    +關(guān)注

    關(guān)注

    1806

    文章

    49008

    瀏覽量

    249323
  • tensorflow
    +關(guān)注

    關(guān)注

    13

    文章

    330

    瀏覽量

    61170
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點(diǎn)推薦

    無法將Tensorflow Lite模型轉(zhuǎn)換為OpenVINO?格式怎么處理?

    Tensorflow Lite 模型轉(zhuǎn)換為 OpenVINO? 格式。 遇到的錯誤: FrontEnd API failed with OpConversionFailure:No translator found for TFLite_Detection_PostProcess node.
    發(fā)表于 06-25 08:27

    用樹莓派搞深度學(xué)習(xí)?TensorFlow啟動!

    介紹本頁面將指導(dǎo)您在搭載64位Bullseye操作系統(tǒng)的RaspberryPi4上安裝TensorFlowTensorFlow是一個專為深度學(xué)習(xí)開發(fā)的大型軟件庫,它消耗大量資源。您可以在
    的頭像 發(fā)表于 03-25 09:33 ?438次閱讀
    用樹莓派搞深度學(xué)習(xí)?<b class='flag-5'>TensorFlow</b>啟動!

    TensorFlow模型轉(zhuǎn)換為中間表示 (IR) 時遇到不一致的形狀錯誤怎么解決?

    使用命令轉(zhuǎn)換為 Tensorflow* 模型: mo --input_model ../models/middlebury_d400.pb --input_shape [1,352,704,6
    發(fā)表于 03-07 08:20

    使用OpenVINO? 2020.4.582將自定義TensorFlow 2模型轉(zhuǎn)換為中間表示 (IR)收到錯誤怎么解決?

    轉(zhuǎn)換自定義 TensorFlow 2 模型 mask_rcnn_inception_resnet_v2_1024x1024_coco17 要 IR 使用模型優(yōu)化器命令: 注意上面的鏈接可能無法
    發(fā)表于 03-07 07:28

    Tensorflow Efficientdet-d0模型轉(zhuǎn)換為OpenVINO? IR失敗了,怎么解決?

    使用轉(zhuǎn)換命令 mo --saved_model_dir /home/obs-56/effi/saved_model 將 TensorFlow* efficientdet-d0 模型轉(zhuǎn)換為 IR
    發(fā)表于 03-06 08:18

    可以使用OpenVINO?工具包將中間表示 (IR) 模型轉(zhuǎn)換為TensorFlow格式嗎?

    無法將中間表示 (IR) 模型轉(zhuǎn)換為 TensorFlow* 格式
    發(fā)表于 03-06 06:51

    使用各種TensorFlow模型運(yùn)行模型優(yōu)化器時遇到錯誤非法指令怎么解決?

    使用各種 TensorFlow 模型運(yùn)行模型優(yōu)化器時遇到 [i]錯誤非法指令
    發(fā)表于 03-05 09:56

    TensorFlow saved_model格式轉(zhuǎn)換為IR遇到錯誤怎么解決?

    TensorFlow saved_model格式轉(zhuǎn)換為 IR。 遇到錯誤: FrontEnd API failed with OpConversionFailure: : No translator found for TensorListFromTensor node.
    發(fā)表于 03-05 09:12

    為什么無法使用OpenVINO?模型優(yōu)化器轉(zhuǎn)換TensorFlow 2.4模型?

    --tensorflow_object_detection_api_pipeline_config /ssd_mobilenet_v2_fpnlite_640x640_coco17_tpu-8/pipeline.config
    發(fā)表于 03-05 09:07

    OpenVINO?是否與TensorFlow集成支持Raspberry Pi?

    無法確定OpenVINO?是否與 TensorFlow* 集成支持 Raspberry Pi。
    發(fā)表于 03-05 08:26

    為什么無法將TensorFlow自定義模型轉(zhuǎn)換為IR格式?

    TensorFlow* 自定義模型轉(zhuǎn)換為 IR 格式: mo --data_type FP16 --saved_model_dir--input_shape (1,150,150,3
    發(fā)表于 03-05 07:26

    為什么無法將自定義EfficientDet模型從TensorFlow 2轉(zhuǎn)換為中間表示(IR)?

    將自定義 EfficientDet 模型從 TensorFlow* 2 轉(zhuǎn)換 為 IR 時遇到錯誤: [ ERROR ] Exception occurred during running replacer \"REPLACEMENT_ID\" ()
    發(fā)表于 03-05 06:29

    快速部署Tensorflow和TFLITE模型在Jacinto7 Soc

    電子發(fā)燒友網(wǎng)站提供《快速部署Tensorflow和TFLITE模型在Jacinto7 Soc.pdf》資料免費(fèi)下載
    發(fā)表于 09-27 11:41 ?0次下載
    快速部署<b class='flag-5'>Tensorflow</b>和TFLITE模型在Jacinto7 Soc

    第四章:在 PC 交叉編譯 aarch64 的 tensorflow 開發(fā)環(huán)境并測試

    本文介紹了在 PC 端交叉編譯 aarch64 平臺的 tensorflow 庫而非 tensorflow lite 的心酸過程。
    的頭像 發(fā)表于 08-25 11:38 ?2594次閱讀
    第四章:在 PC 交叉編譯 aarch64 的 <b class='flag-5'>tensorflow</b> 開發(fā)環(huán)境并測試

    stm32mp135d的板子可不可以跑tensorflow的模型?。?/a>

    請問是stm32mp135d的板子可不可以跑tensorflow的模型???
    發(fā)表于 07-18 06:49