99精品伊人亚洲|最近国产中文炮友|九草在线视频支援|AV网站大全最新|美女黄片免费观看|国产精品资源视频|精彩无码视频一区|91大神在线后入|伊人终合在线播放|久草综合久久中文

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

深度學(xué)習(xí)中圖像分割的方法和應(yīng)用

新機(jī)器視覺(jué) ? 來(lái)源:新機(jī)器視覺(jué) ? 作者:missinglink.ai ? 2020-11-27 10:29 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

介紹使圖像分割的方法,包括傳統(tǒng)方法和深度學(xué)習(xí)方法,以及應(yīng)用場(chǎng)景。

基于人工智能和深度學(xué)習(xí)方法的現(xiàn)代計(jì)算機(jī)視覺(jué)技術(shù)在過(guò)去10年里取得了顯著進(jìn)展。如今,它被用于圖像分類(lèi)、人臉識(shí)別、圖像中物體的識(shí)別、視頻分析和分類(lèi)以及機(jī)器人自動(dòng)駕駛車(chē)輛的圖像處理等應(yīng)用上。

許多計(jì)算機(jī)視覺(jué)任務(wù)需要對(duì)圖像進(jìn)行智能分割,以理解圖像中的內(nèi)容,并使每個(gè)部分的分析更加容易。今天的圖像分割技術(shù)使用計(jì)算機(jī)視覺(jué)深度學(xué)習(xí)模型來(lái)理解圖像的每個(gè)像素所代表的真實(shí)物體,這在十年前是無(wú)法想象的。

深度學(xué)習(xí)可以學(xué)習(xí)視覺(jué)輸入的模式,以預(yù)測(cè)組成圖像的對(duì)象類(lèi)。用于圖像處理的主要深度學(xué)習(xí)架構(gòu)是卷積神經(jīng)網(wǎng)絡(luò)(CNN),或者是特定的CNN框架,如AlexNet、VGG、Inception和ResNet。計(jì)算機(jī)視覺(jué)的深度學(xué)習(xí)模型通常在專(zhuān)門(mén)的圖形處理單元(GPU)上訓(xùn)練和執(zhí)行,以減少計(jì)算時(shí)間。

什么是圖像分割?

圖像分割是計(jì)算機(jī)視覺(jué)中的一個(gè)關(guān)鍵過(guò)程。它包括將視覺(jué)輸入分割成片段以簡(jiǎn)化圖像分析。片段表示目標(biāo)或目標(biāo)的一部分,并由像素集或“超像素”組成。圖像分割將像素組織成更大的部分,消除了將單個(gè)像素作為觀察單位的需要。圖像分析有三個(gè)層次:

分類(lèi)- 將整幅圖片分成“人”、“動(dòng)物”、“戶(hù)外”等類(lèi)別

目標(biāo)檢測(cè)- 檢測(cè)圖像中的目標(biāo)并在其周?chē)?huà)一個(gè)矩形,例如一個(gè)人或一只羊。

分割- 識(shí)別圖像的部分,并理解它們屬于什么對(duì)象。分割是進(jìn)行目標(biāo)檢測(cè)和分類(lèi)的基礎(chǔ)。

語(yǔ)義分割 vs. 實(shí)例分割

在分割過(guò)程本身,有兩個(gè)粒度級(jí)別:

語(yǔ)義分割- 將圖像中的所有像素劃分為有意義的對(duì)象類(lèi)。這些類(lèi)是“語(yǔ)義上可解釋的”,并對(duì)應(yīng)于現(xiàn)實(shí)世界的類(lèi)別。例如,你可以將與貓相關(guān)的所有像素分離出來(lái),并將它們涂成綠色。這也被稱(chēng)為dense預(yù)測(cè),因?yàn)樗A(yù)測(cè)了每個(gè)像素的含義。

實(shí)例分割- 標(biāo)識(shí)圖像中每個(gè)對(duì)象的每個(gè)實(shí)例。它與語(yǔ)義分割的不同之處在于它不是對(duì)每個(gè)像素進(jìn)行分類(lèi)。如果一幅圖像中有三輛車(chē),語(yǔ)義分割將所有的車(chē)分類(lèi)為一個(gè)實(shí)例,而實(shí)例分割則識(shí)別每一輛車(chē)。

傳統(tǒng)的圖像分割方法

還有一些過(guò)去常用的圖像分割技術(shù),但效率不如深度學(xué)習(xí)技術(shù),因?yàn)樗鼈兪褂脟?yán)格的算法,需要人工干預(yù)和專(zhuān)業(yè)知識(shí)。這些包括:

閾值- 將圖像分割為前景和背景。指定的閾值將像素分為兩個(gè)級(jí)別之一,以隔離對(duì)象。閾值化將灰度圖像轉(zhuǎn)換為二值圖像或?qū)⒉噬珗D像的較亮和較暗像素進(jìn)行區(qū)分。

K-means聚類(lèi)- 算法識(shí)別數(shù)據(jù)中的組,變量K表示組的數(shù)量。該算法根據(jù)特征相似性將每個(gè)數(shù)據(jù)點(diǎn)(或像素)分配到其中一組。聚類(lèi)不是分析預(yù)定義的組,而是迭代地工作,從而有機(jī)地形成組。

基于直方圖的圖像分割- 使用直方圖根據(jù)“灰度”對(duì)像素進(jìn)行分組。簡(jiǎn)單的圖像由一個(gè)對(duì)象和一個(gè)背景組成。背景通常是一個(gè)灰度級(jí),是較大的實(shí)體。因此,一個(gè)較大的峰值代表了直方圖中的背景灰度。一個(gè)較小的峰值代表這個(gè)物體,這是另一個(gè)灰色級(jí)別。

邊緣檢測(cè)- 識(shí)別亮度的急劇變化或不連續(xù)的地方。邊緣檢測(cè)通常包括將不連續(xù)點(diǎn)排列成曲線線段或邊緣。例如,一塊紅色和一塊藍(lán)色之間的邊界。

深度學(xué)習(xí)如何助力圖像分割方法

現(xiàn)代圖像分割技術(shù)以深度學(xué)習(xí)技術(shù)為動(dòng)力。下面是幾種用于分割的深度學(xué)習(xí)架構(gòu):

使用CNN進(jìn)行圖像分割,是將圖像的patch作為輸入輸入給卷積神經(jīng)網(wǎng)絡(luò),卷積神經(jīng)網(wǎng)絡(luò)對(duì)像素進(jìn)行標(biāo)記。CNN不能一次處理整個(gè)圖像。它掃描圖像,每次看一個(gè)由幾個(gè)像素組成的小“濾鏡”,直到它映射出整個(gè)圖像。

傳統(tǒng)的cnn網(wǎng)絡(luò)具有全連接的層,不能處理不同的輸入大小。FCNs使用卷積層來(lái)處理不同大小的輸入,可以工作得更快。最終的輸出層具有較大的感受野,對(duì)應(yīng)于圖像的高度和寬度,而通道的數(shù)量對(duì)應(yīng)于類(lèi)的數(shù)量。卷積層對(duì)每個(gè)像素進(jìn)行分類(lèi),以確定圖像的上下文,包括目標(biāo)的位置。

集成學(xué)習(xí)將兩個(gè)或兩個(gè)以上相關(guān)分析模型的結(jié)果合成為單個(gè)。集成學(xué)習(xí)可以提高預(yù)測(cè)精度,減少泛化誤差。這樣就可以對(duì)圖像進(jìn)行精確的分類(lèi)和分割。通過(guò)集成學(xué)習(xí)嘗試生成一組弱的基礎(chǔ)學(xué)習(xí)器,對(duì)圖像的部分進(jìn)行分類(lèi),并組合它們的輸出,而不是試圖創(chuàng)建一個(gè)單一的最優(yōu)學(xué)習(xí)者。

DeepLab使用DeepLab的一個(gè)主要?jiǎng)訖C(jī)是在幫助控制信號(hào)抽取的同時(shí)執(zhí)行圖像分割 —— 減少樣本的數(shù)量和網(wǎng)絡(luò)必須處理的數(shù)據(jù)量。另一個(gè)動(dòng)機(jī)是啟用多尺度上下文特征學(xué)習(xí) —— 從不同尺度的圖像中聚合特征。DeepLab使用ImageNet預(yù)訓(xùn)練的ResNet進(jìn)行特征提取。DeepLab使用空洞卷積而不是規(guī)則的卷積。每個(gè)卷積的不同擴(kuò)張率使ResNet塊能夠捕獲多尺度的上下文信息。DeepLab由三個(gè)部分組成:

Atrous convolutions— 使用一個(gè)因子,可以擴(kuò)展或收縮卷積濾波器的視場(chǎng)。

ResNet— 微軟的深度卷積網(wǎng)絡(luò)(DCNN)。它提供了一個(gè)框架,可以在保持性能的同時(shí)訓(xùn)練數(shù)千個(gè)層。ResNet強(qiáng)大的表征能力促進(jìn)了計(jì)算機(jī)視覺(jué)應(yīng)用的發(fā)展,如物體檢測(cè)和人臉識(shí)別。

Atrous spatial pyramid pooling (ASPP)— 提供多尺度信息。它使用一組具有不同擴(kuò)展率的復(fù)雜函數(shù)來(lái)捕獲大范圍的上下文。ASPP還使用全局平均池(GAP)來(lái)合并圖像級(jí)特征并添加全局上下文信息。

SegNet neural network一種基于深度編碼器和解碼器的架構(gòu),也稱(chēng)為語(yǔ)義像素分割。它包括對(duì)輸入圖像進(jìn)行低維編碼,然后在解碼器中利用方向不變性能力恢復(fù)圖像。然后在解碼器端生成一個(gè)分割圖像。

圖像分割的應(yīng)用

圖像分割有助于確定目標(biāo)之間的關(guān)系,以及目標(biāo)在圖像中的上下文。應(yīng)用包括人臉識(shí)別、車(chē)牌識(shí)別和衛(wèi)星圖像分析。例如,零售和時(shí)尚等行業(yè)在基于圖像的搜索中使用了圖像分割。自動(dòng)駕駛汽車(chē)用它來(lái)了解周?chē)沫h(huán)境。

目標(biāo)檢測(cè)和人臉檢測(cè)

這些應(yīng)用包括識(shí)別數(shù)字圖像中特定類(lèi)的目標(biāo)實(shí)例。語(yǔ)義對(duì)象可以分類(lèi)成類(lèi),如人臉、汽車(chē)、建筑物或貓。

人臉檢測(cè)- 一種用于許多應(yīng)用的目標(biāo)檢測(cè),包括數(shù)字相機(jī)的生物識(shí)別和自動(dòng)對(duì)焦功能。算法檢測(cè)和驗(yàn)證面部特征的存在。例如,眼睛在灰度圖像中顯示為谷地。

醫(yī)學(xué)影像- 從醫(yī)學(xué)影像中提取臨床相關(guān)信息。例如,放射學(xué)家可以使用機(jī)器學(xué)習(xí)來(lái)增強(qiáng)分析,通過(guò)將圖像分割成不同的器官、組織類(lèi)型或疾病癥狀。這可以減少運(yùn)行診斷測(cè)試所需的時(shí)間。

機(jī)器視覺(jué)- 捕捉和處理圖像,為設(shè)備提供操作指導(dǎo)的應(yīng)用。這包括工業(yè)和非工業(yè)的應(yīng)用。機(jī)器視覺(jué)系統(tǒng)使用專(zhuān)用攝像機(jī)中的數(shù)字傳感器,使計(jì)算機(jī)硬件和軟件能夠測(cè)量、處理和分析圖像。例如,檢測(cè)系統(tǒng)為汽水瓶拍照,然后根據(jù)合格 - 不合格標(biāo)準(zhǔn)分析圖像,以確定瓶子是否被正確地填充。

視頻監(jiān)控 — 視頻跟蹤和運(yùn)動(dòng)目標(biāo)跟蹤

這涉及到在視頻中定位移動(dòng)物體。其用途包括安全和監(jiān)視、交通控制、人機(jī)交互和視頻編輯。

自動(dòng)駕駛自動(dòng)駕駛汽車(chē)必須能夠感知和理解他們的環(huán)境,以便安全駕駛。相關(guān)類(lèi)別的對(duì)象包括其他車(chē)輛、建筑物和行人。語(yǔ)義分割使自動(dòng)駕駛汽車(chē)能夠識(shí)別圖像中的哪些區(qū)域可以安全駕駛。

虹膜識(shí)別一種能識(shí)別復(fù)雜虹膜圖案的生物特征識(shí)別技術(shù)。它使用自動(dòng)模式識(shí)別來(lái)分析人眼的視頻圖像。

人臉識(shí)別從視頻中識(shí)別個(gè)體。這項(xiàng)技術(shù)將從輸入圖像中選擇的面部特征與數(shù)據(jù)庫(kù)中的人臉進(jìn)行比較。

零售圖像識(shí)別

這個(gè)應(yīng)用讓零售商了解貨架上商品的布局。算法實(shí)時(shí)處理產(chǎn)品數(shù)據(jù),檢測(cè)貨架上是否有商品。如果有產(chǎn)品缺貨,他們可以找出原因,通知跟單員,并為供應(yīng)鏈的相應(yīng)部分推薦解決方案。

原文標(biāo)題:深度學(xué)習(xí)中的圖像分割:方法和應(yīng)用

文章出處:【微信公眾號(hào):新機(jī)器視覺(jué)】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

責(zé)任編輯:haq

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 機(jī)器視覺(jué)
    +關(guān)注

    關(guān)注

    163

    文章

    4597

    瀏覽量

    122932
  • 人工智能
    +關(guān)注

    關(guān)注

    1807

    文章

    49029

    瀏覽量

    249700
  • 人臉識(shí)別
    +關(guān)注

    關(guān)注

    77

    文章

    4089

    瀏覽量

    84330

原文標(biāo)題:深度學(xué)習(xí)中的圖像分割:方法和應(yīng)用

文章出處:【微信號(hào):vision263com,微信公眾號(hào):新機(jī)器視覺(jué)】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    【正點(diǎn)原子STM32MP257開(kāi)發(fā)板試用】基于 DeepLab 模型的圖像分割

    是谷歌團(tuán)隊(duì)提出的一種用于語(yǔ)義分割深度學(xué)習(xí)模型,屬于 DeepLab 系列模型的第三代版本。它在圖像語(yǔ)義分割任務(wù)中表現(xiàn)優(yōu)異,能夠高效地捕獲
    發(fā)表于 06-21 21:11

    labview調(diào)用yolo目標(biāo)檢測(cè)、分割、分類(lèi)、obb

    labview調(diào)用yolo目標(biāo)檢測(cè)、分割、分類(lèi)、obb、pose深度學(xué)習(xí),支持CPU和GPU推理,32/64位labview均可使用。 (yolov5~yolov12)
    發(fā)表于 03-31 16:28

    軍事應(yīng)用深度學(xué)習(xí)的挑戰(zhàn)與機(jī)遇

    人工智能尤其是深度學(xué)習(xí)技術(shù)的最新進(jìn)展,加速了不同應(yīng)用領(lǐng)域的創(chuàng)新與發(fā)展。深度學(xué)習(xí)技術(shù)的發(fā)展深刻影響了軍事發(fā)展趨勢(shì),導(dǎo)致戰(zhàn)爭(zhēng)形式和模式發(fā)生重大變化。本文將概述
    的頭像 發(fā)表于 02-14 11:15 ?540次閱讀

    傳統(tǒng)機(jī)器學(xué)習(xí)方法和應(yīng)用指導(dǎo)

    用于開(kāi)發(fā)生物學(xué)數(shù)據(jù)的機(jī)器學(xué)習(xí)方法。盡管深度學(xué)習(xí)(一般指神經(jīng)網(wǎng)絡(luò)算法)是一個(gè)強(qiáng)大的工具,目前也非常流行,但它的應(yīng)用領(lǐng)域仍然有限。與深度學(xué)習(xí)相比
    的頭像 發(fā)表于 12-30 09:16 ?1196次閱讀
    傳統(tǒng)機(jī)器<b class='flag-5'>學(xué)習(xí)方法</b>和應(yīng)用指導(dǎo)

    GPU在深度學(xué)習(xí)的應(yīng)用 GPUs在圖形設(shè)計(jì)的作用

    。 GPU的并行計(jì)算能力 GPU最初被設(shè)計(jì)用于處理圖形和圖像的渲染,其核心優(yōu)勢(shì)在于能夠同時(shí)處理成千上萬(wàn)的像素點(diǎn)。這種并行處理能力使得GPU非常適合執(zhí)行深度學(xué)習(xí)的大規(guī)模矩陣運(yùn)算。在
    的頭像 發(fā)表于 11-19 10:55 ?1630次閱讀

    深度學(xué)習(xí)的卷積神經(jīng)網(wǎng)絡(luò)模型

    深度學(xué)習(xí)近年來(lái)在多個(gè)領(lǐng)域取得了顯著的進(jìn)展,尤其是在圖像識(shí)別、語(yǔ)音識(shí)別和自然語(yǔ)言處理等方面。卷積神經(jīng)網(wǎng)絡(luò)作為深度學(xué)習(xí)的一個(gè)分支,因其在
    的頭像 發(fā)表于 11-15 14:52 ?851次閱讀

    NPU在深度學(xué)習(xí)的應(yīng)用

    設(shè)計(jì)的硬件加速器,它在深度學(xué)習(xí)的應(yīng)用日益廣泛。 1. NPU的基本概念 NPU是一種專(zhuān)門(mén)針對(duì)深度學(xué)習(xí)算法優(yōu)化的處理器,它與傳統(tǒng)的CPU和G
    的頭像 發(fā)表于 11-14 15:17 ?1927次閱讀

    pcie在深度學(xué)習(xí)的應(yīng)用

    深度學(xué)習(xí)模型通常需要大量的數(shù)據(jù)和強(qiáng)大的計(jì)算能力來(lái)訓(xùn)練。傳統(tǒng)的CPU計(jì)算資源有限,難以滿足深度學(xué)習(xí)的需求。因此,GPU(圖形處理單元)和TPU(張量處理單元)等專(zhuān)用硬件應(yīng)運(yùn)而生,它們通過(guò)
    的頭像 發(fā)表于 11-13 10:39 ?1360次閱讀

    Pytorch深度學(xué)習(xí)訓(xùn)練的方法

    掌握這 17 種方法,用最省力的方式,加速你的 Pytorch 深度學(xué)習(xí)訓(xùn)練。
    的頭像 發(fā)表于 10-28 14:05 ?665次閱讀
    Pytorch<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>訓(xùn)練的<b class='flag-5'>方法</b>

    GPU深度學(xué)習(xí)應(yīng)用案例

    GPU在深度學(xué)習(xí)的應(yīng)用廣泛且重要,以下是一些GPU深度學(xué)習(xí)應(yīng)用案例: 一、圖像識(shí)別
    的頭像 發(fā)表于 10-27 11:13 ?1389次閱讀

    激光雷達(dá)技術(shù)的基于深度學(xué)習(xí)的進(jìn)步

    信息。這使得激光雷達(dá)在自動(dòng)駕駛、無(wú)人機(jī)、機(jī)器人等領(lǐng)域具有廣泛的應(yīng)用前景。 二、深度學(xué)習(xí)技術(shù)的發(fā)展 深度學(xué)習(xí)是機(jī)器學(xué)習(xí)的一個(gè)分支,它通過(guò)模擬人
    的頭像 發(fā)表于 10-27 10:57 ?1073次閱讀

    AI大模型與深度學(xué)習(xí)的關(guān)系

    AI大模型與深度學(xué)習(xí)之間存在著密不可分的關(guān)系,它們互為促進(jìn),相輔相成。以下是對(duì)兩者關(guān)系的介紹: 一、深度學(xué)習(xí)是AI大模型的基礎(chǔ) 技術(shù)支撐 :深度
    的頭像 發(fā)表于 10-23 15:25 ?2903次閱讀

    AI大模型在圖像識(shí)別的優(yōu)勢(shì)

    AI大模型在圖像識(shí)別展現(xiàn)出了顯著的優(yōu)勢(shì),這些優(yōu)勢(shì)主要源于其強(qiáng)大的計(jì)算能力、深度學(xué)習(xí)算法以及大規(guī)模的數(shù)據(jù)處理能力。以下是對(duì)AI大模型在圖像識(shí)
    的頭像 發(fā)表于 10-23 15:01 ?2450次閱讀

    語(yǔ)義分割25種損失函數(shù)綜述和展望

    語(yǔ)義圖像分割,即將圖像的每個(gè)像素分類(lèi)到特定的類(lèi)別,是許多視覺(jué)理解系統(tǒng)的重要組成部分。作為評(píng)
    的頭像 發(fā)表于 10-22 08:04 ?1625次閱讀
    語(yǔ)義<b class='flag-5'>分割</b>25種損失函數(shù)綜述和展望

    FPGA做深度學(xué)習(xí)能走多遠(yuǎn)?

    的性能和效率。同時(shí),也可能會(huì)出現(xiàn)一些新的基于 FPGA 的深度學(xué)習(xí)算法創(chuàng)新,拓展其應(yīng)用領(lǐng)域。 ? 應(yīng)用領(lǐng)域的拓展:除了在圖像識(shí)別、語(yǔ)音處理、自動(dòng)駕駛等領(lǐng)域的應(yīng)用,F(xiàn)PGA 在
    發(fā)表于 09-27 20:53