99精品伊人亚洲|最近国产中文炮友|九草在线视频支援|AV网站大全最新|美女黄片免费观看|国产精品资源视频|精彩无码视频一区|91大神在线后入|伊人终合在线播放|久草综合久久中文

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

深度神經(jīng)網(wǎng)絡(luò)是為人工智能的重要基石

姚小熊27 ? 來源: 科技行者 ? 作者: 科技行者 ? 2020-11-25 09:50 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

深度神經(jīng)網(wǎng)絡(luò)是一種使用數(shù)學(xué)模型處理圖像以及其他數(shù)據(jù)的多層系統(tǒng),而且目前已經(jīng)發(fā)展為人工智能的重要基石。

深度神經(jīng)網(wǎng)絡(luò)得出的結(jié)果看似復(fù)雜,但同樣有可能受到誤導(dǎo)。而這樣的誤導(dǎo)輕則致使其將一種動物錯誤識別為另一種動物,重則在自動駕駛汽車上將停車標(biāo)志誤解為正常前進(jìn)。

休斯敦大學(xué)的一位哲學(xué)家在發(fā)表于《自然機器智能》上的一篇論文中提到,關(guān)于這些假想問題背后的普遍假設(shè),在于誤導(dǎo)性信息可能給這類網(wǎng)絡(luò)的可靠性造成嚴(yán)重影響。

隨著機器學(xué)習(xí)以及其他形式的人工智能越來越深入滲透至社會,其用途也開始涵蓋從ATM機到網(wǎng)絡(luò)安全系統(tǒng)的廣泛領(lǐng)域。哲學(xué)系副教授Cameron Buckner表示,正是這種普及,讓了解明顯錯誤的來源變得無比重要。研究人員們將這類信息稱為“對抗性示例”,指當(dāng)深度神經(jīng)網(wǎng)絡(luò)在學(xué)習(xí)過程中遇到訓(xùn)練輸入之外的其他信息時,則很有可能總結(jié)出錯誤的結(jié)論、最終引發(fā)圖像或數(shù)據(jù)誤判。之所以被表述為“對抗性”,是因為這樣的問題往往只能由另一機器學(xué)習(xí)網(wǎng)絡(luò)所產(chǎn)生或發(fā)現(xiàn)。作為機器學(xué)習(xí)領(lǐng)域中的一種前沿技術(shù),對抗雙方將不斷升級自身能力,以更復(fù)雜的方法嘗試實現(xiàn)干擾與反干擾。

Buckner提到,“但這種對抗有時候可能源自人為誤導(dǎo),因此要想更好地了解神經(jīng)網(wǎng)絡(luò)的可靠性,我們必須對誤導(dǎo)問題做出深入研究。”

換言之,這種誤導(dǎo)結(jié)果很可能源自網(wǎng)絡(luò)需要處理的內(nèi)容、與所涉及的實際模式之間的某種相互作用所引發(fā)。這與傳統(tǒng)意義上的誤導(dǎo),似乎還不完全是同一種概念。

Buckner寫道,“理解對抗性整合的含義,可能需要探索第三種可能性:其中至少有一部分模式屬于人為創(chuàng)造。因此,目前的難題在于,直接丟棄這些模式可能有損模型學(xué)習(xí),但直接使用則具有潛在風(fēng)險。”

引發(fā)機器學(xué)習(xí)系統(tǒng)錯誤的對抗性事件除了無心而發(fā),更可能是有意為之。Buckner認(rèn)為這才是更嚴(yán)重的風(fēng)險,“意味著惡意攻擊者可能會欺騙某些本應(yīng)可靠的系統(tǒng),例如安全類應(yīng)用程序?!?/p>

例如,基于人臉識別技術(shù)的安全系統(tǒng)很可能遭遇黑客入侵,導(dǎo)致違規(guī)行為的出現(xiàn);或者在交通標(biāo)志上張貼某些圖形,導(dǎo)致自動駕駛汽車產(chǎn)生意外誤解。

先前的研究發(fā)現(xiàn),與人們的預(yù)期相反,使用場景中天然存在著一些對抗性示例,即機器學(xué)習(xí)系統(tǒng)有可能因為意外交互(而非因數(shù)據(jù)錯誤)而產(chǎn)生誤解。這類情況相當(dāng)罕見,必須通過其他人工智能技術(shù)才可能發(fā)現(xiàn)。

但這些問題又真實存在,要求研究人員重新考慮該如何辨別自然異常與人為誤導(dǎo)。

事實上,我們對這類人為誤導(dǎo)的理解并不清晰。但這有點像是相機鏡頭上時不時出現(xiàn)的光暈,類似于依靠光暈來判斷畫面中太陽的位置,研究人員似乎也可以借助這樣的蛛絲馬跡推斷機器學(xué)習(xí)中的惡意誤導(dǎo)方法。

更重要的是,這種新的思考方式也將影響人們在深度神經(jīng)網(wǎng)絡(luò)中使用工件的方式,包括不應(yīng)簡單將誤解結(jié)論視為深度學(xué)習(xí)無效。

他總結(jié)道,“某些對抗性事件很可能是人為設(shè)計而來。我們必須知曉其中的手法與工件是什么,這樣才能真正理解深度神經(jīng)網(wǎng)絡(luò)的可靠性。”
責(zé)任編輯:YYX

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    開售RK3576 高性能人工智能主板

    ZYSJ-2476B 高性能智能主板,采用瑞芯微 RK3576 高性能 AI 處理器、神經(jīng)網(wǎng)絡(luò)處理器 NPU, Android 14.0/debian11/ubuntu20.04 操作系統(tǒng)
    發(fā)表于 04-23 10:55

    【「芯片通識課:一本書讀懂芯片技術(shù)」閱讀體驗】從deepseek看今天芯片發(fā)展

    的: 神經(jīng)網(wǎng)絡(luò)處理器(NPU)是一種模仿人腦神經(jīng)網(wǎng)絡(luò)的電路系統(tǒng),是實現(xiàn)人工智能神經(jīng)網(wǎng)絡(luò)計算的專用處理器,主要用于人工智能
    發(fā)表于 04-02 17:25

    BP神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)的關(guān)系

    BP神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)之間存在著密切的關(guān)系,以下是對它們之間關(guān)系的介紹: 一、BP神經(jīng)網(wǎng)絡(luò)的基本概念 BP神經(jīng)網(wǎng)絡(luò),即反向傳播神經(jīng)網(wǎng)絡(luò)(Ba
    的頭像 發(fā)表于 02-12 15:15 ?867次閱讀

    深度學(xué)習(xí)入門:簡單神經(jīng)網(wǎng)絡(luò)的構(gòu)建與實現(xiàn)

    深度學(xué)習(xí)中,神經(jīng)網(wǎng)絡(luò)是核心模型。今天我們用 Python 和 NumPy 構(gòu)建一個簡單的神經(jīng)網(wǎng)絡(luò)。 神經(jīng)網(wǎng)絡(luò)由多個神經(jīng)元組成,
    的頭像 發(fā)表于 01-23 13:52 ?533次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法

    在上一篇文章中,我們介紹了傳統(tǒng)機器學(xué)習(xí)的基礎(chǔ)知識和多種算法。在本文中,我們會介紹人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法,供各位老師選擇。 01 人工
    的頭像 發(fā)表于 01-09 10:24 ?1213次閱讀
    <b class='flag-5'>人工</b><b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>架構(gòu)方法

    卷積神經(jīng)網(wǎng)絡(luò)在自然語言處理中的應(yīng)用

    自然語言處理是人工智能領(lǐng)域的一個重要分支,它致力于使計算機能夠理解、解釋和生成人類語言。隨著深度學(xué)習(xí)技術(shù)的發(fā)展,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)作為一種強大的模型,在圖像識別和語音處理等領(lǐng)域取
    的頭像 發(fā)表于 11-15 14:58 ?807次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的比較

    深度學(xué)習(xí)領(lǐng)域,神經(jīng)網(wǎng)絡(luò)模型被廣泛應(yīng)用于各種任務(wù),如圖像識別、自然語言處理和游戲智能等。其中,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)是兩種常
    的頭像 發(fā)表于 11-15 14:53 ?1882次閱讀

    深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)模型

    深度學(xué)習(xí)近年來在多個領(lǐng)域取得了顯著的進(jìn)展,尤其是在圖像識別、語音識別和自然語言處理等方面。卷積神經(jīng)網(wǎng)絡(luò)作為深度學(xué)習(xí)的一個分支,因其在圖像處理任務(wù)中的卓越性能而受到廣泛關(guān)注。 卷積神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 11-15 14:52 ?850次閱讀

    嵌入式和人工智能究竟是什么關(guān)系?

    人工智能的結(jié)合,無疑是科技發(fā)展中的一場革命。在人工智能硬件加速中,嵌入式系統(tǒng)以其獨特的優(yōu)勢和重要性,發(fā)揮著不可或缺的作用。通過深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)
    發(fā)表于 11-14 16:39

    LSTM神經(jīng)網(wǎng)絡(luò)在語音識別中的應(yīng)用實例

    語音識別技術(shù)是人工智能領(lǐng)域的一個重要分支,它使計算機能夠理解和處理人類語言。隨著深度學(xué)習(xí)技術(shù)的發(fā)展,特別是長短期記憶(LSTM)神經(jīng)網(wǎng)絡(luò)的引入,語音識別的準(zhǔn)確性和效率得到了顯著提升。
    的頭像 發(fā)表于 11-13 10:03 ?1856次閱讀

    Moku人工神經(jīng)網(wǎng)絡(luò)101

    不熟悉神經(jīng)網(wǎng)絡(luò)的基礎(chǔ)知識,或者想了解神經(jīng)網(wǎng)絡(luò)如何優(yōu)化加速實驗研究,請繼續(xù)閱讀,探索基于深度學(xué)習(xí)的現(xiàn)代智能化實驗的廣闊應(yīng)用前景。什么是神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 11-01 08:06 ?668次閱讀
    Moku<b class='flag-5'>人工</b><b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>101

    關(guān)于卷積神經(jīng)網(wǎng)絡(luò),這些概念你厘清了么~

    隨著人工智能(AI)技術(shù)的快速發(fā)展,AI可以越來越多地支持以前無法實現(xiàn)或者難以實現(xiàn)的應(yīng)用。本文基于此解釋了 卷積神經(jīng)網(wǎng)絡(luò) (CNN)及其對人工智能和機器學(xué)習(xí)的意義。CNN是一種能夠從復(fù)雜數(shù)據(jù)中提
    發(fā)表于 10-24 13:56

    《AI for Science:人工智能驅(qū)動科學(xué)創(chuàng)新》第二章AI for Science的技術(shù)支撐學(xué)習(xí)心得

    人工智能在科學(xué)研究中的核心技術(shù),包括機器學(xué)習(xí)、深度學(xué)習(xí)、神經(jīng)網(wǎng)絡(luò)等。這些技術(shù)構(gòu)成了AI for Science的基石,使得AI能夠處理和分析復(fù)雜的數(shù)據(jù)集,從而發(fā)現(xiàn)隱藏在數(shù)據(jù)中的模式和規(guī)
    發(fā)表于 10-14 09:16

    FPGA在人工智能中的應(yīng)用有哪些?

    定制化的硬件設(shè)計,提高了硬件的靈活性和適應(yīng)性。 綜上所述,F(xiàn)PGA在人工智能領(lǐng)域的應(yīng)用前景廣闊,不僅可以用于深度學(xué)習(xí)的加速和云計算的加速,還可以針對特定應(yīng)用場景進(jìn)行定制化計算,為人工智能技術(shù)的發(fā)展提供有力支持。
    發(fā)表于 07-29 17:05

    FPGA在深度神經(jīng)網(wǎng)絡(luò)中的應(yīng)用

    隨著人工智能技術(shù)的飛速發(fā)展,深度神經(jīng)網(wǎng)絡(luò)(Deep Neural Network, DNN)作為其核心算法之一,在圖像識別、語音識別、自然語言處理等領(lǐng)域取得了顯著成果。然而,傳統(tǒng)的深度
    的頭像 發(fā)表于 07-24 10:42 ?1212次閱讀