99精品伊人亚洲|最近国产中文炮友|九草在线视频支援|AV网站大全最新|美女黄片免费观看|国产精品资源视频|精彩无码视频一区|91大神在线后入|伊人终合在线播放|久草综合久久中文

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

關(guān)于機(jī)器學(xué)習(xí)和人工神經(jīng)網(wǎng)絡(luò)

璟琰乀 ? 來源:TsinghuaJoking ? 作者:TsinghuaJoking ? 2020-11-05 10:02 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

在人工神經(jīng)網(wǎng)絡(luò)課程之后,有一位同學(xué)課下問了一個(gè)問題,她這學(xué)期也在學(xué)習(xí)“機(jī)器學(xué)習(xí)”課程,感覺“人工神經(jīng)網(wǎng)絡(luò)”課程的內(nèi)容與機(jī)器學(xué)習(xí)課程的內(nèi)容大同小異。究竟這些課程之間有何區(qū)別呢?弄不清楚這些自己這學(xué)期的課程很是擔(dān)心。

之所以產(chǎn)生這樣的疑問,原因來自于這兩門課程之間的相似之處,而且隨著學(xué)科的發(fā)展它們重合度也在增加。但它們之間的差異在哪兒呢?

除了它們各自發(fā)展的理論和技術(shù)歷史和路徑不同、未來研究熱點(diǎn)和實(shí)現(xiàn)途徑差異之外,也許認(rèn)清它們之間的聯(lián)系更重要。

DJ Patil在他的一個(gè)短片中 What’s the difference between ML and NN? 總結(jié)了機(jī)器學(xué)習(xí)和人工神經(jīng)網(wǎng)絡(luò)幾點(diǎn)關(guān)系:

一種對(duì)人工神經(jīng)網(wǎng)絡(luò),機(jī)器學(xué)習(xí),人工智能之間關(guān)系的最基本看法是:人工神經(jīng)網(wǎng)絡(luò)是眾多問題解決方案中的一種;

現(xiàn)今階段你所能看到的人工神經(jīng)網(wǎng)絡(luò)大部分是一種使用大量數(shù)據(jù)訓(xùn)練的多層深度學(xué)習(xí)網(wǎng)絡(luò),并在傳統(tǒng)的誤差反向傳播(BP)技術(shù)之上衍生出很多其他特性;

對(duì)于神經(jīng)網(wǎng)絡(luò)算法的提高也使得它與機(jī)器學(xué)習(xí)方法有了很多共同之處:比如監(jiān)督學(xué)習(xí)、非監(jiān)督學(xué)習(xí)、Logistic回歸、隨機(jī)森林等。這些方法的共同之處都是通過一些訓(xùn)練數(shù)據(jù)及來尋找到一些滿足某些約束條件的函數(shù)映射。

近日,一篇來自于斯坦福大學(xué)的人工智能定義短文 Artificial Intelligence Definitions 從某一角度較為詳細(xì)的把智能相關(guān)的概念進(jìn)行了梳理,閱讀它也許可以幫你盡可能理清這個(gè)領(lǐng)域中的眾多學(xué)科之間的關(guān)系。

智能 可以被定義為在不確定、時(shí)刻變化的環(huán)境中通過學(xué)習(xí)和實(shí)施合適的技術(shù)來解決碰到的問題或達(dá)到既定目標(biāo)的能力。而那種安全靠編程來靈活、精確、可靠工作的工廠中的機(jī)器人則不具有智能。

人工智能 這一詞語是由斯坦福大學(xué)退休名譽(yù)教授 McCarthy 在1955年提出,是指:“制造出智能設(shè)備的科學(xué)和工程技術(shù)?!?多數(shù)研究是通過計(jì)算機(jī)編程使得機(jī)器表現(xiàn)出聰明,比如下象棋。但今天我們更強(qiáng)調(diào)機(jī)器能夠像人類一樣進(jìn)行學(xué)習(xí)。

自主系統(tǒng) 無需借助底層(微?。┕芾肀憧梢宰灾鲗?duì)完成特定目標(biāo)的步驟進(jìn)行規(guī)劃和決策。比如在醫(yī)院里遞送藥品的機(jī)器人可以成功穿越擁擠的走廊完成這個(gè)任務(wù)。在人工智能中的自主,與政治和生物領(lǐng)域中的自主概念并不相同。

機(jī)器學(xué)習(xí) 是人工智能中研究如何通過計(jì)算機(jī)軟件,在已有的經(jīng)驗(yàn)和數(shù)據(jù)的基礎(chǔ)上提高感知、知識(shí)、思考和行動(dòng)能力。為實(shí)現(xiàn)這個(gè)目的,機(jī)器學(xué)習(xí)應(yīng)用了計(jì)算機(jī)科學(xué)、統(tǒng)計(jì)學(xué)、心理學(xué)、神經(jīng)科學(xué)、經(jīng)濟(jì)學(xué)(?) 以及控制理論。

監(jiān)督學(xué)習(xí) 計(jì)算機(jī)軟件從人類給定數(shù)據(jù)的標(biāo)簽中來進(jìn)行預(yù)測(cè),比如從狗的圖片來預(yù)測(cè)狗的品種。 無監(jiān)督學(xué)習(xí) 則無需數(shù)據(jù)標(biāo)簽,有時(shí)是自行完成預(yù)測(cè)任務(wù),例如預(yù)測(cè)一個(gè)句子中詞語的前后順序。 增強(qiáng)學(xué)習(xí) 是根據(jù)總的獎(jiǎng)賞條件來自行確定要執(zhí)行任務(wù),比如在游戲中,無需給定哪種好的技術(shù),它便可以自行學(xué)習(xí)。

深度學(xué)習(xí) 則通過使用大型多層人工神經(jīng)網(wǎng)絡(luò) 形成類似于人腦中神經(jīng)元的層次結(jié)構(gòu),計(jì)算它們之間連續(xù)變化的權(quán)值。這是當(dāng)今機(jī)器學(xué)習(xí)各種方法中應(yīng)用最為成功的方法。無論數(shù)據(jù)集合大小還是計(jì)算能力消耗量,它都能夠很好的推廣。

普通的算法需要像編寫的計(jì)算機(jī)程序那樣有精確的執(zhí)行步驟。而人工智能算法則只有少量的用于描述學(xué)習(xí)和獎(jiǎng)勵(lì)的計(jì)算方法,大部分算法的性能則是通過對(duì)數(shù)據(jù)和經(jīng)驗(yàn)的學(xué)習(xí)來獲得。對(duì)于這種巨大的變化,b畢業(yè)于斯坦福大學(xué)的Andrej Kapathy稱為它 軟件的2.0版本。

狹義的人工智能 是為了完成特定任務(wù),比如語音、人臉識(shí)別。類人智能,或者廣義智能 則是探索更加一般性的智能,適用不同語境的機(jī)器。比如一些社交聊天機(jī)器人或者人與機(jī)器人的交互等。

聚焦人類人工智能 則是為增加人的能力、解決社會(huì)需求、從人類行為獲得啟發(fā)的人工智能,研究制作人類更加有效伙伴和工具,比如對(duì)老年人的輔助和關(guān)愛機(jī)器人。

責(zé)任編輯:haq

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)的比較

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)在多個(gè)方面存在顯著差異,以下是對(duì)兩者的比較: 一、結(jié)構(gòu)特點(diǎn) BP神經(jīng)網(wǎng)絡(luò) : BP神經(jīng)網(wǎng)絡(luò)是一種多層的前饋神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 02-12 15:53 ?659次閱讀

    如何優(yōu)化BP神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)

    優(yōu)化BP神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)率是提高模型訓(xùn)練效率和性能的關(guān)鍵步驟。以下是一些優(yōu)化BP神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)率的方法: 一、理解學(xué)習(xí)率的重要性
    的頭像 發(fā)表于 02-12 15:51 ?928次閱讀

    BP神經(jīng)網(wǎng)絡(luò)的優(yōu)缺點(diǎn)分析

    BP神經(jīng)網(wǎng)絡(luò)(Back Propagation Neural Network)作為一種常用的機(jī)器學(xué)習(xí)模型,具有顯著的優(yōu)點(diǎn),同時(shí)也存在一些不容忽視的缺點(diǎn)。以下是對(duì)BP神經(jīng)網(wǎng)絡(luò)優(yōu)缺點(diǎn)的分析
    的頭像 發(fā)表于 02-12 15:36 ?914次閱讀

    什么是BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法

    BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法(Backpropagation Algorithm)是一種用于訓(xùn)練神經(jīng)網(wǎng)絡(luò)的有效方法。以下是關(guān)于BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法的介紹: 一、基本概念 反向傳播算
    的頭像 發(fā)表于 02-12 15:18 ?764次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)的關(guān)系

    ),是一種多層前饋神經(jīng)網(wǎng)絡(luò),它通過反向傳播算法進(jìn)行訓(xùn)練。BP神經(jīng)網(wǎng)絡(luò)由輸入層、一個(gè)或多個(gè)隱藏層和輸出層組成,通過逐層遞減的方式調(diào)整網(wǎng)絡(luò)權(quán)重,目的是最小化網(wǎng)絡(luò)的輸出誤差。 二、深度
    的頭像 發(fā)表于 02-12 15:15 ?850次閱讀

    深度學(xué)習(xí)入門:簡單神經(jīng)網(wǎng)絡(luò)的構(gòu)建與實(shí)現(xiàn)

    深度學(xué)習(xí)中,神經(jīng)網(wǎng)絡(luò)是核心模型。今天我們用 Python 和 NumPy 構(gòu)建一個(gè)簡單的神經(jīng)網(wǎng)絡(luò)。 神經(jīng)網(wǎng)絡(luò)由多個(gè)神經(jīng)元組成,
    的頭像 發(fā)表于 01-23 13:52 ?528次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法

    在上一篇文章中,我們介紹了傳統(tǒng)機(jī)器學(xué)習(xí)的基礎(chǔ)知識(shí)和多種算法。在本文中,我們會(huì)介紹人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法,供各位老師選擇。
    的頭像 發(fā)表于 01-09 10:24 ?1183次閱讀
    <b class='flag-5'>人工</b><b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>架構(gòu)方法

    卷積神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的比較

    在深度學(xué)習(xí)領(lǐng)域,神經(jīng)網(wǎng)絡(luò)模型被廣泛應(yīng)用于各種任務(wù),如圖像識(shí)別、自然語言處理和游戲智能等。其中,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)是兩種常見的模型。 1. 結(jié)構(gòu)差異 1.1 傳統(tǒng)
    的頭像 發(fā)表于 11-15 14:53 ?1864次閱讀

    RNN模型與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的區(qū)別

    神經(jīng)網(wǎng)絡(luò)機(jī)器學(xué)習(xí)領(lǐng)域中的一種強(qiáng)大工具,它們能夠模擬人腦處理信息的方式。隨著技術(shù)的發(fā)展,神經(jīng)網(wǎng)絡(luò)的類型也在不斷增加,其中循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN
    的頭像 發(fā)表于 11-15 09:42 ?1124次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)與其他機(jī)器學(xué)習(xí)算法的比較

    隨著人工智能技術(shù)的飛速發(fā)展,機(jī)器學(xué)習(xí)算法在各個(gè)領(lǐng)域中扮演著越來越重要的角色。長短期記憶網(wǎng)絡(luò)(LSTM)作為一種特殊的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),
    的頭像 發(fā)表于 11-13 10:17 ?2133次閱讀

    Moku人工神經(jīng)網(wǎng)絡(luò)101

    Moku3.3版更新在Moku:Pro平臺(tái)新增了全新的儀器功能【神經(jīng)網(wǎng)絡(luò)】,使用戶能夠在Moku設(shè)備上部署實(shí)時(shí)機(jī)器學(xué)習(xí)算法,進(jìn)行快速、靈活的信號(hào)分析、去噪、傳感器調(diào)節(jié)校準(zhǔn)、閉環(huán)反饋等應(yīng)用。如果您
    的頭像 發(fā)表于 11-01 08:06 ?661次閱讀
    Moku<b class='flag-5'>人工</b><b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>101

    關(guān)于卷積神經(jīng)網(wǎng)絡(luò),這些概念你厘清了么~

    隨著人工智能(AI)技術(shù)的快速發(fā)展,AI可以越來越多地支持以前無法實(shí)現(xiàn)或者難以實(shí)現(xiàn)的應(yīng)用。本文基于此解釋了 卷積神經(jīng)網(wǎng)絡(luò) (CNN)及其對(duì)人工智能和機(jī)器
    發(fā)表于 10-24 13:56

    如何選擇神經(jīng)網(wǎng)絡(luò)種類

    人工智能和機(jī)器學(xué)習(xí)領(lǐng)域,選擇適合的神經(jīng)網(wǎng)絡(luò)種類是構(gòu)建高效、準(zhǔn)確模型的關(guān)鍵步驟。這一過程涉及對(duì)任務(wù)類型、數(shù)據(jù)特性、計(jì)算資源及模型性能要求等多方面的綜合考慮。
    的頭像 發(fā)表于 07-24 11:29 ?1190次閱讀

    如何構(gòu)建多層神經(jīng)網(wǎng)絡(luò)

    構(gòu)建多層神經(jīng)網(wǎng)絡(luò)(MLP, Multi-Layer Perceptron)模型是一個(gè)在機(jī)器學(xué)習(xí)和深度學(xué)習(xí)領(lǐng)域廣泛使用的技術(shù),尤其在處理分類和回歸問題時(shí)。在本文中,我們將深入探討如何從頭
    的頭像 發(fā)表于 07-19 17:19 ?1554次閱讀

    Python自動(dòng)訓(xùn)練人工神經(jīng)網(wǎng)絡(luò)

    人工神經(jīng)網(wǎng)絡(luò)(ANN)是機(jī)器學(xué)習(xí)中一種重要的模型,它模仿了人腦神經(jīng)元的工作方式,通過多層節(jié)點(diǎn)(神經(jīng)
    的頭像 發(fā)表于 07-19 11:54 ?698次閱讀