99精品伊人亚洲|最近国产中文炮友|九草在线视频支援|AV网站大全最新|美女黄片免费观看|国产精品资源视频|精彩无码视频一区|91大神在线后入|伊人终合在线播放|久草综合久久中文

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

算法的算法:人工神經(jīng)網(wǎng)絡(luò)

工程師 ? 來源:TsinghuaJoking ? 作者:TsinghuaJoking ? 2020-10-27 15:59 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

在上周的人工神經(jīng)網(wǎng)絡(luò)課程中介紹了機(jī)器學(xué)習(xí)中的支持向量機(jī)(SVM:Support Vector Machine)與前饋網(wǎng)絡(luò)RBF的之間的聯(lián)系,而對(duì)于由傳遞函數(shù)為線性函數(shù)組成的單層網(wǎng)絡(luò)的代表自適應(yīng)線性單元(ADLINE:Adaptive Linear Element)更是和傳統(tǒng)信號(hào)處理中的自適應(yīng)濾波器相類似。

這些都會(huì)讓我們看到神經(jīng)網(wǎng)絡(luò)算法似乎能夠與很多其他學(xué)科算法搭起聯(lián)系。下面由Matthew P. Burruss的博文中《 Every Machine Learning Algorithm Can Be Represented as a Neural Network》 更是將這個(gè)觀點(diǎn)進(jìn)行了詳細(xì)的梳理。

Every Machine Learning Algorithm Can Be Represented as a Neural Network》:

從1950年代的早期研究開始,機(jī)器學(xué)習(xí)的所有工作似乎都隨著神經(jīng)網(wǎng)絡(luò)的創(chuàng)建而匯聚起來。從Logistic回歸到支持向量機(jī),算法層出不窮,毫不夸張的說,神經(jīng)網(wǎng)絡(luò)成為算法的算法,為機(jī)器學(xué)習(xí)的頂峰。它也從最初不斷嘗試中成為機(jī)器學(xué)習(xí)的通用表達(dá)形式。

在這個(gè)意義上,它不僅僅簡(jiǎn)單的是一個(gè)算法,而是一個(gè)框架和理念,這也為構(gòu)建神經(jīng)網(wǎng)絡(luò)提供了更加廣泛的自由空間:比如它包括不同的隱層數(shù)量和節(jié)點(diǎn)數(shù)量、各種形式的激活(傳遞)函數(shù)、優(yōu)化工具、損失函數(shù)、網(wǎng)絡(luò)類型(卷積、遞歸等)以及一些專用處理層(各種批處理模式、網(wǎng)絡(luò)參數(shù)隨機(jī)丟棄:Dropout等)。

由此,可以將神經(jīng)網(wǎng)絡(luò)從一個(gè)固定算法展拓到一個(gè)通用觀念,并得到如下有趣的推文:任何機(jī)器學(xué)習(xí)算法,無論是決策樹還是k近鄰,都可以使用神經(jīng)網(wǎng)絡(luò)來表示。

這個(gè)概念可以通過下面的一些舉例得到驗(yàn)證,同樣也可以使用數(shù)據(jù)進(jìn)行嚴(yán)格的證明。

1.回歸

首先讓我們定義什么是神經(jīng)網(wǎng)絡(luò):它是一個(gè)由輸入層,隱藏層和輸出層組成的體系結(jié)構(gòu),每一層的節(jié)點(diǎn)之間都有連接。信息從輸入層輸入到網(wǎng)絡(luò),然后逐層通過隱層傳遞到輸出層。在層之間傳遞過程中,數(shù)據(jù)通過線性變換(權(quán)重和偏差)和非線性函數(shù)(激勵(lì)函數(shù))變換。存在很多算法來對(duì)網(wǎng)絡(luò)中可變參數(shù)進(jìn)行訓(xùn)練。

Logistic回歸簡(jiǎn)單定義為標(biāo)準(zhǔn)回歸,每個(gè)輸入均具有乘法系數(shù),并添加了附加偏移量(截距),然后經(jīng)過Signmoid型函數(shù)傳遞。這可以通過沒有隱藏層的神經(jīng)網(wǎng)絡(luò)來表示, 結(jié)果是通過Sigmoid形式的輸出神經(jīng)元的多元回歸。

通過將輸出神經(jīng)元激活函數(shù)替換為線性激活函數(shù)(可以簡(jiǎn)單地映射輸出 ,換句話說,它什么都不做),就形成線性回歸。

2.支持向量機(jī)

支持向量機(jī)(SVM)算法嘗試通過所謂的“核函數(shù)技術(shù)”將數(shù)據(jù)投影到新的高維空間中,從而提高數(shù)據(jù)的線性可分離性。轉(zhuǎn)換完數(shù)據(jù)后,算法可在高位空間獲得兩類之間最優(yōu)的分類超平面。超平面被簡(jiǎn)單地定義為數(shù)據(jù)維度的線性組合,非常像2維空間中的直線和3維空間中的平面。

從這個(gè)意義上講,人們可以將SVM算法看作是數(shù)據(jù)到新空間的投影,然后是 多重回歸。神經(jīng)網(wǎng)絡(luò)的輸出可以通過某種有界輸出函數(shù)傳遞,以實(shí)現(xiàn)概率結(jié)果。

當(dāng)然,可能需要實(shí)施一些限制,例如限制節(jié)點(diǎn)之間的連接并固定某些參數(shù),這些更改當(dāng)然不會(huì)脫離“神經(jīng)網(wǎng)絡(luò)”標(biāo)簽的完整性。也許需要添加更多的層,以確保支持向量機(jī)的這種表現(xiàn)能夠達(dá)到與實(shí)際交易一樣的效果。

3.決策樹

諸如決策樹算法之類的基于樹的算法有些棘手。關(guān)于如何構(gòu)建這種神經(jīng)網(wǎng)絡(luò)的答案在于分析它如何劃分其特征空間。當(dāng)訓(xùn)練點(diǎn)遍歷一系列拆分節(jié)點(diǎn)時(shí),特征空間將拆分為多個(gè)超立方體。在二維示例中,垂直線和水平線創(chuàng)建了正方形。

因此,可以通過更嚴(yán)格的激活來模擬沿特征線分割特征空間的類似方式,例如階躍函數(shù),其中輸入是一個(gè)值或另一個(gè)值-本質(zhì)上是分隔線。權(quán)重和偏差可能需要實(shí)施值限制,因此僅用于通過拉伸,收縮和定位來定向分隔線。為了獲得概率結(jié)果,可以通過激活函數(shù)傳遞結(jié)果。

盡管算法的神經(jīng)網(wǎng)絡(luò)表示與實(shí)際算法之間存在許多技術(shù)差異,但重點(diǎn)是網(wǎng)絡(luò)表達(dá)的思想相同,并且可以與實(shí)際算法相同的策略和性能來解決問題。

也許您不滿意將算法簡(jiǎn)單地轉(zhuǎn)換為神經(jīng)網(wǎng)絡(luò)形式,也許希望看到通用過程可以將所有棘手的算法都進(jìn)行這種轉(zhuǎn)換,例如k近鄰算法或樸素貝葉斯算法等,而不是針對(duì)每個(gè)算法都手工進(jìn)行轉(zhuǎn)換。

這種同樣算法轉(zhuǎn)換的答案就在于通用函數(shù)逼近定理,這也是在大量神經(jīng)網(wǎng)絡(luò)工作原理背后的支撐數(shù)學(xué)原理。它的主要含義是:足夠大的神經(jīng)網(wǎng)絡(luò)可以以任意精度對(duì)任何函數(shù)建模。

假設(shè)有一些函數(shù) 代表數(shù)據(jù)背后的規(guī)律:對(duì)于每個(gè)數(shù)據(jù)點(diǎn) , 始終返回等于或非常接近 的值。

建模的目的是找到該內(nèi)部映射關(guān)系 一個(gè)有效表示,我們將其記為預(yù)測(cè)函數(shù) 。所有機(jī)器學(xué)習(xí)算法對(duì)這個(gè)任務(wù)的處理方式都大不相同,采用不同用于驗(yàn)證結(jié)果有效的假設(shè)條件,并給出具體算法來獲得最優(yōu)結(jié)果 。這些獲得優(yōu)化結(jié)果p(x)的算法,可說從在這些假設(shè)條件限制下,利用純粹的數(shù)學(xué)推導(dǎo)獲得。描述函數(shù)如何將目標(biāo)映射到輸入的函數(shù)實(shí)際上可以采用任何形式,下面給出幾種典型的情況:

有的時(shí)候通過數(shù)學(xué)推導(dǎo)可以對(duì)表達(dá)式進(jìn)行求解。但面對(duì)大量待定函數(shù)參數(shù),往往需要通過不停的試湊來搜索。但是,神經(jīng)網(wǎng)絡(luò)在尋找 的方式上有些不同。

任何函數(shù)都可以由許多類似階梯的部分合理地逼近,劃分的區(qū)間步數(shù)越多,逼近的精度就越高。

每一個(gè)區(qū)間都對(duì)應(yīng)神經(jīng)網(wǎng)絡(luò)中的一些節(jié)點(diǎn),即隱層中具有S型激活函數(shù)的節(jié)點(diǎn)。激活函數(shù)本質(zhì)上是概率階躍函數(shù)。實(shí)際上每個(gè)節(jié)點(diǎn)都代表函數(shù) 的一個(gè)局部。然后,通過系統(tǒng)中的權(quán)重和偏差,網(wǎng)絡(luò)為特定輸入來激活不同的神經(jīng)元,使其輸出為1),否則輸出0。于是便可以將不同函數(shù)的局部最后合并成整個(gè)函數(shù)。

這種處理模式不僅對(duì)應(yīng)上面的一維函數(shù)有效,在圖像中也觀察到了這種通過激活不同節(jié)點(diǎn)以尋找數(shù)據(jù)中特定的模式。

通用逼近定理已擴(kuò)展為適用于其他激活函數(shù)(如ReLU和神經(jīng)網(wǎng)絡(luò)類型),但原理仍然適用。神經(jīng)網(wǎng)絡(luò)是實(shí)現(xiàn)通用逼近定義的最佳表現(xiàn)形式。

相對(duì)于通過復(fù)雜方程和關(guān)系數(shù)學(xué)形式來描述通用逼近定理,神經(jīng)網(wǎng)絡(luò)則通過構(gòu)建特殊的網(wǎng)絡(luò)結(jié)構(gòu),并通過訓(xùn)練數(shù)據(jù)來獲得結(jié)構(gòu)中的參數(shù)。這個(gè)過程就好像是通過蠻力記憶將函數(shù)存儲(chǔ)在網(wǎng)絡(luò)中。這個(gè)匯集眾多節(jié)點(diǎn)的網(wǎng)絡(luò)結(jié)構(gòu),通過訓(xùn)練過程來逼近任意函數(shù)過程就表現(xiàn)出具有某種聰明特征的智能系統(tǒng)了。

基于以上假設(shè),神經(jīng)網(wǎng)絡(luò)至少可以在理論上構(gòu)造出一個(gè)函數(shù),該函數(shù)基本上具有所需的精度(節(jié)點(diǎn)數(shù)越多,近似值越準(zhǔn)確,當(dāng)然不考慮過擬合的技術(shù)性),具有正確結(jié)構(gòu)的神經(jīng)網(wǎng)絡(luò)可以對(duì)任何其他機(jī)器學(xué)習(xí)預(yù)測(cè)函數(shù)進(jìn)行建模,反過來,其他任何機(jī)器學(xué)習(xí)算法,都不能這么說。

神經(jīng)網(wǎng)絡(luò)使用的方法并不是對(duì)一些現(xiàn)有的優(yōu)化模型,比如多項(xiàng)式回歸或者節(jié)點(diǎn)系統(tǒng),只是對(duì)少量參數(shù)進(jìn)行優(yōu)化,它是直接去逼近數(shù)據(jù)內(nèi)部所蘊(yùn)含的規(guī)律,而不是基于某種特定的模型來描述數(shù)據(jù)。這種理念是那些常見到的網(wǎng)絡(luò)模型結(jié)構(gòu)與其它機(jī)器學(xué)習(xí)之間最為不同之處。

借助神經(jīng)網(wǎng)絡(luò)的力量以及對(duì)深度學(xué)習(xí)的不斷延伸領(lǐng)域的不斷研究,無論是視頻,聲音,流行病學(xué)數(shù)據(jù)還是兩者之間的任何數(shù)據(jù),都將能夠以前所未有的精度來進(jìn)行建模。神經(jīng)網(wǎng)絡(luò)確實(shí)可以被成為算法之算法。

責(zé)任編輯:haq

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    無刷電機(jī)小波神經(jīng)網(wǎng)絡(luò)轉(zhuǎn)子位置檢測(cè)方法的研究

    摘要:論文通過對(duì)無刷電機(jī)數(shù)學(xué)模型的推導(dǎo),得出轉(zhuǎn)角:與三相相電壓之間存在映射關(guān)系,因此構(gòu)建了一個(gè)以三相相電壓為輸人,轉(zhuǎn)角為輸出的小波神經(jīng)網(wǎng)絡(luò)來實(shí)現(xiàn)轉(zhuǎn)角預(yù)測(cè),并采用改進(jìn)遺傳算法來訓(xùn)練網(wǎng)絡(luò)結(jié)構(gòu)與參數(shù),借助
    發(fā)表于 06-25 13:06

    神經(jīng)網(wǎng)絡(luò)專家系統(tǒng)在電機(jī)故障診斷中的應(yīng)用

    的診斷誤差。仿真結(jié)果驗(yàn)證了該算法的有效性。 純分享帖,需要者可點(diǎn)擊附件免費(fèi)獲取完整資料~~~*附件:神經(jīng)網(wǎng)絡(luò)專家系統(tǒng)在電機(jī)故障診斷中的應(yīng)用.pdf【免責(zé)聲明】本文系網(wǎng)絡(luò)轉(zhuǎn)載,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版
    發(fā)表于 06-16 22:09

    AI神經(jīng)網(wǎng)絡(luò)降噪算法在語(yǔ)音通話產(chǎn)品中的應(yīng)用優(yōu)勢(shì)與前景分析

    隨著人工智能技術(shù)的快速發(fā)展,AI神經(jīng)網(wǎng)絡(luò)降噪算法在語(yǔ)音通話產(chǎn)品中的應(yīng)用正逐步取代傳統(tǒng)降噪技術(shù),成為提升語(yǔ)音質(zhì)量的關(guān)鍵解決方案。相比傳統(tǒng)DSP(數(shù)字信號(hào)處理)降噪,AI降噪具有更強(qiáng)的環(huán)境適應(yīng)能力、更高
    的頭像 發(fā)表于 05-16 17:07 ?432次閱讀
    AI<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>降噪<b class='flag-5'>算法</b>在語(yǔ)音通話產(chǎn)品中的應(yīng)用優(yōu)勢(shì)與前景分析

    BP神經(jīng)網(wǎng)絡(luò)網(wǎng)絡(luò)結(jié)構(gòu)設(shè)計(jì)原則

    BP(back propagation)神經(jīng)網(wǎng)絡(luò)是一種按照誤差逆向傳播算法訓(xùn)練的多層前饋神經(jīng)網(wǎng)絡(luò),其網(wǎng)絡(luò)結(jié)構(gòu)設(shè)計(jì)原則主要基于以下幾個(gè)方面: 一、層次結(jié)構(gòu) 輸入層 :接收外部輸入信號(hào),不
    的頭像 發(fā)表于 02-12 16:41 ?746次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)的比較

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)在多個(gè)方面存在顯著差異,以下是對(duì)兩者的比較: 一、結(jié)構(gòu)特點(diǎn) BP神經(jīng)網(wǎng)絡(luò) : BP神經(jīng)網(wǎng)絡(luò)是一種多層的前饋神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 02-12 15:53 ?673次閱讀

    什么是BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法

    BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法(Backpropagation Algorithm)是一種用于訓(xùn)練神經(jīng)網(wǎng)絡(luò)的有效方法。以下是關(guān)于BP神經(jīng)網(wǎng)絡(luò)的反向傳播
    的頭像 發(fā)表于 02-12 15:18 ?775次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)的關(guān)系

    ),是一種多層前饋神經(jīng)網(wǎng)絡(luò),它通過反向傳播算法進(jìn)行訓(xùn)練。BP神經(jīng)網(wǎng)絡(luò)由輸入層、一個(gè)或多個(gè)隱藏層和輸出層組成,通過逐層遞減的方式調(diào)整網(wǎng)絡(luò)權(quán)重,目的是最小化
    的頭像 發(fā)表于 02-12 15:15 ?863次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法

    在上一篇文章中,我們介紹了傳統(tǒng)機(jī)器學(xué)習(xí)的基礎(chǔ)知識(shí)和多種算法。在本文中,我們會(huì)介紹人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法,供各位老師選擇。 01
    的頭像 發(fā)表于 01-09 10:24 ?1209次閱讀
    <b class='flag-5'>人工</b><b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>架構(gòu)方法

    卷積神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的比較

    在深度學(xué)習(xí)領(lǐng)域,神經(jīng)網(wǎng)絡(luò)模型被廣泛應(yīng)用于各種任務(wù),如圖像識(shí)別、自然語(yǔ)言處理和游戲智能等。其中,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)是兩種常見的模型。 1. 結(jié)構(gòu)差異 1.1 傳統(tǒng)神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 11-15 14:53 ?1879次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的基本原理與算法

    ),是深度學(xué)習(xí)的代表算法之一。 一、基本原理 卷積運(yùn)算 卷積運(yùn)算是卷積神經(jīng)網(wǎng)絡(luò)的核心,用于提取圖像中的局部特征。 定義卷積核:卷積核是一個(gè)小的矩陣,用于在輸入圖像上滑動(dòng),提取局部特征。 滑動(dòng)窗口:將卷積核在輸入圖像上滑動(dòng),每次滑動(dòng)一個(gè)像素點(diǎn)。 計(jì)算卷積:將卷積核與輸入圖像
    的頭像 發(fā)表于 11-15 14:47 ?1785次閱讀

    RNN模型與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的區(qū)別

    傳統(tǒng)神經(jīng)網(wǎng)絡(luò)(前饋神經(jīng)網(wǎng)絡(luò)) 2.1 結(jié)構(gòu) 傳統(tǒng)神經(jīng)網(wǎng)絡(luò),通常指的是前饋神經(jīng)網(wǎng)絡(luò)(Feedforward Neural Networks, FNN),是一種最簡(jiǎn)單的
    的頭像 發(fā)表于 11-15 09:42 ?1133次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)與其他機(jī)器學(xué)習(xí)算法的比較

    隨著人工智能技術(shù)的飛速發(fā)展,機(jī)器學(xué)習(xí)算法在各個(gè)領(lǐng)域中扮演著越來越重要的角色。長(zhǎng)短期記憶網(wǎng)絡(luò)(LSTM)作為一種特殊的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),因其在處理序列數(shù)據(jù)方面的優(yōu)勢(shì)而受到廣泛關(guān)注。
    的頭像 發(fā)表于 11-13 10:17 ?2147次閱讀

    Moku人工神經(jīng)網(wǎng)絡(luò)101

    Moku3.3版更新在Moku:Pro平臺(tái)新增了全新的儀器功能【神經(jīng)網(wǎng)絡(luò)】,使用戶能夠在Moku設(shè)備上部署實(shí)時(shí)機(jī)器學(xué)習(xí)算法,進(jìn)行快速、靈活的信號(hào)分析、去噪、傳感器調(diào)節(jié)校準(zhǔn)、閉環(huán)反饋等應(yīng)用。如果您
    的頭像 發(fā)表于 11-01 08:06 ?667次閱讀
    Moku<b class='flag-5'>人工</b><b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>101

    【飛凌嵌入式OK3576-C開發(fā)板體驗(yàn)】RKNN神經(jīng)網(wǎng)絡(luò)算法開發(fā)環(huán)境搭建

    download_model.sh 腳本,該腳本 將下載一個(gè)可用的 YOLOv5 ONNX 模型,并存放在當(dāng)前 model 目錄下,參考命令如下: 安裝COCO數(shù)據(jù)集,在深度神經(jīng)網(wǎng)絡(luò)算法中,模型的訓(xùn)練離不開大量的數(shù)據(jù)集,數(shù)據(jù)集用于
    發(fā)表于 10-10 09:28

    FPGA在深度神經(jīng)網(wǎng)絡(luò)中的應(yīng)用

    隨著人工智能技術(shù)的飛速發(fā)展,深度神經(jīng)網(wǎng)絡(luò)(Deep Neural Network, DNN)作為其核心算法之一,在圖像識(shí)別、語(yǔ)音識(shí)別、自然語(yǔ)言處理等領(lǐng)域取得了顯著成果。然而,傳統(tǒng)的深度神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 07-24 10:42 ?1209次閱讀