99精品伊人亚洲|最近国产中文炮友|九草在线视频支援|AV网站大全最新|美女黄片免费观看|国产精品资源视频|精彩无码视频一区|91大神在线后入|伊人终合在线播放|久草综合久久中文

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

MBL研究團(tuán)隊(duì)采用深度學(xué)習(xí)大大減少圖像分析時(shí)間

如意 ? 來源:健康網(wǎng) ? 作者:健康網(wǎng) ? 2020-06-30 11:19 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

馬薩諸塞州伍茲霍爾-圖片只值一千字-但前提是要清楚其描繪的內(nèi)容。在顯微生活的圖像或錄像制作中也存在摩擦。盡管現(xiàn)代顯微鏡可以在幾秒鐘內(nèi)從活組織或細(xì)胞中生成大量圖像數(shù)據(jù),但從這些數(shù)據(jù)中提取有意義的生物學(xué)信息卻需要花費(fèi)數(shù)小時(shí)甚至數(shù)周的艱苦分析。

為了緩解這一主要瓶頸,由MBL研究員Hari Shroff領(lǐng)導(dǎo)的團(tuán)隊(duì)設(shè)計(jì)了深度學(xué)習(xí)和其他計(jì)算方法,可將圖像分析時(shí)間顯著減少幾個(gè)數(shù)量級(jí)-在某些情況下,與數(shù)據(jù)采集本身的速度相匹配。他們本周在《自然生物技術(shù)》中報(bào)告了他們的結(jié)果。

Shroff說:“這就像從水喉中喝水而無法消化您所喝的水一樣?!背R姷膯栴}是成像數(shù)據(jù)過多,而后處理能力不足。團(tuán)隊(duì)的改進(jìn)來自海洋生物實(shí)驗(yàn)室(MBL)的持續(xù)合作,它通過三種主要方式加快了圖像分析的速度。

首先,顯微鏡下的成像數(shù)據(jù)通常會(huì)因模糊而損壞。為了減輕模糊,使用了迭代的“去卷積”過程。計(jì)算機(jī)在模糊圖像和實(shí)際物體的估計(jì)之間來回移動(dòng),直到達(dá)到對(duì)真實(shí)物體的最佳估計(jì)的收斂為止。

通過修改經(jīng)典的反卷積算法,Shroff及其合作者將反卷積加速了10倍以上。Shroff說,他們改進(jìn)的算法可廣泛應(yīng)用于“幾乎所有熒光顯微鏡”?!拔覀冋J(rèn)為這是一次嚴(yán)格的勝利。我們已經(jīng)發(fā)布了代碼,其他組織已經(jīng)在使用它?!?/p>

接下來,他們解決了3D配準(zhǔn)的問題:對(duì)齊和融合從不同角度拍攝的物體的多個(gè)圖像。Shroff說:“事實(shí)證明,注冊(cè)大型數(shù)據(jù)集(如光片顯微鏡)要比對(duì)它們進(jìn)行去卷積要花費(fèi)更長的時(shí)間。”他們發(fā)現(xiàn)了幾種加速3D注冊(cè)的方法,包括將其移動(dòng)到計(jì)算機(jī)的圖形處理單元(GPU)。與使用計(jì)算機(jī)的中央處理器CPU)相比,這使他們的處理速度提高了10到100倍以上。

Shroff說:“我們?cè)谂錅?zhǔn)和解卷積方面的改進(jìn)意味著,對(duì)于適合圖形卡的數(shù)據(jù)集,圖像分析原則上可以跟上采集速度。”“對(duì)于更大的數(shù)據(jù)集,我們找到了一種有效地將它們分割成塊,將每個(gè)塊傳遞到GPU,進(jìn)行配準(zhǔn)和解卷積然后將這些塊縫合在一起的方法。如果要對(duì)大塊組織成像,這非常重要例如,從海洋動(dòng)物身上獲取的,或者如果您正在清理一個(gè)器官以使其透明,則可以將其放在顯微鏡上。這兩種進(jìn)展確實(shí)使某些形式的大型顯微鏡成為現(xiàn)實(shí),并加速了發(fā)展?!?/p>

最后,該團(tuán)隊(duì)使用深度學(xué)習(xí)來加速“復(fù)雜的反卷積”-難以處理的數(shù)據(jù)集,其中模糊在圖像的不同部分發(fā)生明顯變化。他們培訓(xùn)了計(jì)算機(jī),以識(shí)別嚴(yán)重模糊的數(shù)據(jù)(輸入)與經(jīng)過清理,反卷積的圖像(輸出)之間的關(guān)系。然后他們給它提供了前所未有的模糊數(shù)據(jù)。Shroff說:“它確實(shí)運(yùn)作良好;訓(xùn)練有素的神經(jīng)網(wǎng)絡(luò)可以非??焖俚禺a(chǎn)生反卷積結(jié)果?!薄斑@就是我們?cè)诜淳矸e速度上獲得了數(shù)千倍的改進(jìn)的地方?!?/p>

Shroff說,盡管深度學(xué)習(xí)算法的效果出乎意料的出色,但“警告是它們很脆弱”?!耙馑际钦f,一旦訓(xùn)練了神經(jīng)網(wǎng)絡(luò)以識(shí)別一種圖像類型,例如具有線粒體的細(xì)胞,它將很好地使這些圖像解卷積。但是,如果您給它提供的圖像有些不同,則說細(xì)胞的質(zhì)膜,它會(huì)產(chǎn)生偽像。很容易愚弄神經(jīng)網(wǎng)絡(luò)?!毖芯康幕钴S領(lǐng)域是創(chuàng)建以更通用的方式工作的神經(jīng)網(wǎng)絡(luò)。

Shroff說:“深度學(xué)習(xí)增強(qiáng)了可能性。”“這是分析數(shù)據(jù)集的好工具,而這是其他方法很難做到的?!?/p>

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 圖像分析
    +關(guān)注

    關(guān)注

    0

    文章

    82

    瀏覽量

    18932
  • 深度學(xué)習(xí)
    +關(guān)注

    關(guān)注

    73

    文章

    5561

    瀏覽量

    122786
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    存儲(chǔ)示波器的存儲(chǔ)深度對(duì)信號(hào)分析有什么影響?

    。以下從技術(shù)原理、實(shí)際影響及優(yōu)化策略三方面展開分析。一、存儲(chǔ)深度對(duì)信號(hào)分析的核心影響1. 時(shí)域信號(hào)完整性 邊沿細(xì)節(jié)捕捉能力 高頻信號(hào)邊沿:如100MHz時(shí)鐘信號(hào)的上升沿/下降沿時(shí)間
    發(fā)表于 05-27 14:39

    OpenAI發(fā)布深度研究智能體功能

    OpenAI的o3模型提供支持,通過端到端的強(qiáng)化學(xué)習(xí)訓(xùn)練,實(shí)現(xiàn)了高效、準(zhǔn)確的研究能力。它能夠在5-30分鐘內(nèi)完成一份專業(yè)報(bào)告,大大縮短了研究時(shí)間
    的頭像 發(fā)表于 02-05 15:05 ?548次閱讀

    NPU在深度學(xué)習(xí)中的應(yīng)用

    隨著人工智能技術(shù)的飛速發(fā)展,深度學(xué)習(xí)作為其核心驅(qū)動(dòng)力之一,已經(jīng)在眾多領(lǐng)域展現(xiàn)出了巨大的潛力和價(jià)值。NPU(Neural Processing Unit,神經(jīng)網(wǎng)絡(luò)處理單元)是專門為深度學(xué)習(xí)
    的頭像 發(fā)表于 11-14 15:17 ?1902次閱讀

    GPU深度學(xué)習(xí)應(yīng)用案例

    GPU在深度學(xué)習(xí)中的應(yīng)用廣泛且重要,以下是一些GPU深度學(xué)習(xí)應(yīng)用案例: 一、圖像識(shí)別 圖像識(shí)別是
    的頭像 發(fā)表于 10-27 11:13 ?1352次閱讀

    激光雷達(dá)技術(shù)的基于深度學(xué)習(xí)的進(jìn)步

    信息。這使得激光雷達(dá)在自動(dòng)駕駛、無人機(jī)、機(jī)器人等領(lǐng)域具有廣泛的應(yīng)用前景。 二、深度學(xué)習(xí)技術(shù)的發(fā)展 深度學(xué)習(xí)是機(jī)器學(xué)習(xí)的一個(gè)分支,它通過模擬人
    的頭像 發(fā)表于 10-27 10:57 ?1060次閱讀

    FPGA加速深度學(xué)習(xí)模型的案例

    FPGA(現(xiàn)場(chǎng)可編程門陣列)加速深度學(xué)習(xí)模型是當(dāng)前硬件加速領(lǐng)域的一個(gè)熱門研究方向。以下是一些FPGA加速深度學(xué)習(xí)模型的案例: 一、基于FPG
    的頭像 發(fā)表于 10-25 09:22 ?1220次閱讀

    AI大模型與深度學(xué)習(xí)的關(guān)系

    AI大模型與深度學(xué)習(xí)之間存在著密不可分的關(guān)系,它們互為促進(jìn),相輔相成。以下是對(duì)兩者關(guān)系的介紹: 一、深度學(xué)習(xí)是AI大模型的基礎(chǔ) 技術(shù)支撐 :深度
    的頭像 發(fā)表于 10-23 15:25 ?2878次閱讀

    AI大模型在圖像識(shí)別中的優(yōu)勢(shì)

    大模型借助高性能的計(jì)算硬件和優(yōu)化的算法,能夠在短時(shí)間內(nèi)完成對(duì)大量圖像數(shù)據(jù)的處理和分析,顯著提高了圖像識(shí)別的效率。 識(shí)別準(zhǔn)確性 :通過深度
    的頭像 發(fā)表于 10-23 15:01 ?2419次閱讀

    FPGA做深度學(xué)習(xí)能走多遠(yuǎn)?

    ,F(xiàn)PGA 也需要不斷適應(yīng)和改進(jìn)。研究人員和開發(fā)者將致力于針對(duì) FPGA 的特點(diǎn)對(duì)深度學(xué)習(xí)算法進(jìn)行優(yōu)化,例如探索更高效的模型壓縮方法、量化技術(shù)以及硬件友好的算法結(jié)構(gòu)等,以進(jìn)一步提高 FPGA 在
    發(fā)表于 09-27 20:53

    深度識(shí)別算法包括哪些內(nèi)容

    :CNN是深度學(xué)習(xí)中處理圖像和視頻等具有網(wǎng)格結(jié)構(gòu)數(shù)據(jù)的主要算法。它通過卷積層、池化層和全連接層等組件,實(shí)現(xiàn)對(duì)圖像特征的自動(dòng)提取和識(shí)別。 應(yīng)用領(lǐng)域 :CNN在
    的頭像 發(fā)表于 09-10 15:28 ?834次閱讀

    【「時(shí)間序列與機(jī)器學(xué)習(xí)」閱讀體驗(yàn)】時(shí)間序列的信息提取

    。 時(shí)間序列的單調(diào)性理論是數(shù)學(xué)求導(dǎo)。下面是使用EWMA分析股票價(jià)格變動(dòng),以決定買入還是賣出。通過仿真數(shù)據(jù),這種指數(shù)移動(dòng)平均的技術(shù)剔除了短期波動(dòng),有助看清股票整體趨勢(shì)。 通過對(duì)本章學(xué)習(xí),對(duì)時(shí)
    發(fā)表于 08-17 21:12

    【《時(shí)間序列與機(jī)器學(xué)習(xí)》閱讀體驗(yàn)】+ 了解時(shí)間序列

    學(xué)習(xí)方法對(duì)該序列數(shù)據(jù)進(jìn)行分析,可以得到結(jié)論或預(yù)測(cè)估計(jì),因此時(shí)間序列分析的用途是非常多的,比如: 可以反映社會(huì)經(jīng)濟(jì)現(xiàn)象的發(fā)展變化過程,描述現(xiàn)象的發(fā)展?fàn)顟B(tài)和結(jié)果。 可以
    發(fā)表于 08-11 17:55

    【「時(shí)間序列與機(jī)器學(xué)習(xí)」閱讀體驗(yàn)】全書概覽與時(shí)間序列概述

    如何通過根因分析技術(shù)獲得導(dǎo)致故障的維度和元素,包括基于時(shí)間序列異常檢測(cè)算法的根因分析、基于熵的根因分析、基于樹模型的根因分析、規(guī)則
    發(fā)表于 08-07 23:03

    PyTorch深度學(xué)習(xí)開發(fā)環(huán)境搭建指南

    PyTorch作為一種流行的深度學(xué)習(xí)框架,其開發(fā)環(huán)境的搭建對(duì)于深度學(xué)習(xí)研究者和開發(fā)者來說至關(guān)重要。在Windows操作系統(tǒng)上搭建PyTorc
    的頭像 發(fā)表于 07-16 18:29 ?2519次閱讀

    圖像識(shí)別算法的優(yōu)缺點(diǎn)有哪些

    圖像識(shí)別算法可以快速地處理大量圖像數(shù)據(jù),提高工作效率。與傳統(tǒng)的人工識(shí)別方法相比,圖像識(shí)別算法可以在短時(shí)間內(nèi)完成對(duì)大量圖像
    的頭像 發(fā)表于 07-16 11:09 ?3156次閱讀