99精品伊人亚洲|最近国产中文炮友|九草在线视频支援|AV网站大全最新|美女黄片免费观看|国产精品资源视频|精彩无码视频一区|91大神在线后入|伊人终合在线播放|久草综合久久中文

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

深度強(qiáng)化學(xué)習(xí)的概念和工作原理的詳細(xì)資料說明

Wildesbeast ? 來源:OFweek ? 作者:OFweek ? 2020-05-16 09:20 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

深度學(xué)習(xí)DL是機(jī)器學(xué)習(xí)中一種基于對(duì)數(shù)據(jù)進(jìn)行表征學(xué)習(xí)的方法。深度學(xué)習(xí)DL有監(jiān)督和非監(jiān)督之分,都已經(jīng)得到廣泛的研究和應(yīng)用。強(qiáng)化學(xué)習(xí)RL是通過對(duì)未知環(huán)境一邊探索一邊建立環(huán)境模型以及學(xué)習(xí)得到一個(gè)最優(yōu)策略。強(qiáng)化學(xué)習(xí)是機(jī)器學(xué)習(xí)中一種快速、高效且不可替代的學(xué)習(xí)算法。

深度強(qiáng)化學(xué)習(xí)DRL自提出以來, 已在理論和應(yīng)用方面均取得了顯著的成果。尤其是谷歌DeepMind團(tuán)隊(duì)基于深度強(qiáng)化學(xué)習(xí)DRL研發(fā)的AlphaGo,將深度強(qiáng)化學(xué)習(xí)DRL成推上新的熱點(diǎn)和高度,成為人工智能歷史上一個(gè)新的里程碑。因此,深度強(qiáng)化學(xué)習(xí)DRL非常值得研究。

深度強(qiáng)化學(xué)習(xí)概念:深度強(qiáng)化學(xué)習(xí)DRL將深度學(xué)習(xí)DL的感知能力和強(qiáng)化學(xué)習(xí)RL的決策能力相結(jié)合, 可以直接根據(jù)輸入的信息進(jìn)行控制,是一種更接近人類思維方式的人工智能方法。在與世界的正?;?dòng)過程中,強(qiáng)化學(xué)習(xí)會(huì)通過試錯(cuò)法利用獎(jiǎng)勵(lì)來學(xué)習(xí)。它跟自然學(xué)習(xí)過程非常相似,而與深度學(xué)習(xí)不同。在強(qiáng)化學(xué)習(xí)中,可以用較少的訓(xùn)練信息,這樣做的優(yōu)勢是信息更充足,而且不受監(jiān)督者技能限制。

深度強(qiáng)化學(xué)習(xí)DRL是深度學(xué)習(xí)和強(qiáng)化學(xué)習(xí)的結(jié)合。這兩種學(xué)習(xí)方式在很大程度上是正交問題,二者結(jié)合得很好。強(qiáng)化學(xué)習(xí)定義了優(yōu)化的目標(biāo),深度學(xué)習(xí)給出了運(yùn)行機(jī)制——表征問題的方式以及解決問題的方式。將強(qiáng)化學(xué)習(xí)和深度學(xué)習(xí)結(jié)合在一起,尋求一個(gè)能夠解決任何人類級(jí)別任務(wù)的代理,得到了能夠解決很多復(fù)雜問題的一種能力——通用智能。深度強(qiáng)化學(xué)習(xí)DRL將有助于革新AI領(lǐng)域,它是朝向構(gòu)建對(duì)視覺世界擁有更高級(jí)理解的自主系統(tǒng)邁出的一步。從某種意義上講,深度強(qiáng)化學(xué)習(xí)DRL是人工智能的未來。

深度強(qiáng)化學(xué)習(xí)本質(zhì):深度強(qiáng)化學(xué)習(xí)DRL的Autonomous Agent使用強(qiáng)化學(xué)習(xí)的試錯(cuò)算法和累計(jì)獎(jiǎng)勵(lì)函數(shù)來加速神經(jīng)網(wǎng)絡(luò)設(shè)計(jì)。這些設(shè)計(jì)為很多依靠監(jiān)督/無監(jiān)督學(xué)習(xí)的人工智能應(yīng)用提供支持。它涉及對(duì)強(qiáng)化學(xué)習(xí)驅(qū)動(dòng)Autonomous Agent的使用,以快速探索與無數(shù)體系結(jié)構(gòu)、節(jié)點(diǎn)類型、連接、超參數(shù)設(shè)置相關(guān)的性能權(quán)衡,以及對(duì)深度學(xué)習(xí)、機(jī)器學(xué)習(xí)和其他人工智能模型設(shè)計(jì)人員可用的其它選擇。

深度強(qiáng)化學(xué)習(xí)原理:深度Q網(wǎng)絡(luò)通過使用深度學(xué)習(xí)DL和強(qiáng)化學(xué)習(xí)RL兩種技術(shù),來解決在強(qiáng)化學(xué)習(xí)RL中使用函數(shù)逼近的基本不穩(wěn)定性問題:經(jīng)驗(yàn)重放和目標(biāo)網(wǎng)絡(luò)。經(jīng)驗(yàn)重放使得強(qiáng)化學(xué)習(xí)RL智能體能夠從先前觀察到的數(shù)據(jù)離線進(jìn)行抽樣和訓(xùn)練。這不僅大大減少了環(huán)境所需的交互量,而且可以對(duì)一批經(jīng)驗(yàn)進(jìn)行抽樣,減少學(xué)習(xí)更新的差異。此外,通過從大存儲(chǔ)器均勻采樣,可能對(duì)強(qiáng)化學(xué)習(xí)RL算法產(chǎn)生不利影響的時(shí)間相關(guān)性被打破了。最后,從實(shí)際的角度看,可以通過現(xiàn)代硬件并行地高效地處理批量的數(shù)據(jù),從而提高吞吐量。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 人工智能
    +關(guān)注

    關(guān)注

    1806

    文章

    49014

    瀏覽量

    249435
  • 機(jī)器學(xué)習(xí)

    關(guān)注

    66

    文章

    8503

    瀏覽量

    134601
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    NVIDIA Isaac Lab可用環(huán)境與強(qiáng)化學(xué)習(xí)腳本使用指南

    Lab 是一個(gè)適用于機(jī)器人學(xué)習(xí)的開源模塊化框架,其模塊化高保真仿真適用于各種訓(xùn)練環(huán)境,Isaac Lab 同時(shí)支持模仿學(xué)習(xí)(模仿人類)和強(qiáng)化學(xué)習(xí)(在嘗試和錯(cuò)誤中進(jìn)行學(xué)習(xí)),為所有機(jī)器
    的頭像 發(fā)表于 07-14 15:29 ?549次閱讀
    NVIDIA Isaac Lab可用環(huán)境與<b class='flag-5'>強(qiáng)化學(xué)習(xí)</b>腳本使用指南

    18個(gè)常用的強(qiáng)化學(xué)習(xí)算法整理:從基礎(chǔ)方法到高級(jí)模型的理論技術(shù)與代碼實(shí)現(xiàn)

    本來轉(zhuǎn)自:DeepHubIMBA本文系統(tǒng)講解從基本強(qiáng)化學(xué)習(xí)方法到高級(jí)技術(shù)(如PPO、A3C、PlaNet等)的實(shí)現(xiàn)原理與編碼過程,旨在通過理論結(jié)合代碼的方式,構(gòu)建對(duì)強(qiáng)化學(xué)習(xí)算法的全面理解。為確保內(nèi)容
    的頭像 發(fā)表于 04-23 13:22 ?405次閱讀
    18個(gè)常用的<b class='flag-5'>強(qiáng)化學(xué)習(xí)</b>算法整理:從基礎(chǔ)方法到高級(jí)模型的理論技術(shù)與代碼實(shí)現(xiàn)

    在OpenVINO?工具套件的深度學(xué)習(xí)工作臺(tái)中無法導(dǎo)出INT8模型怎么解決?

    無法在 OpenVINO? 工具套件的深度學(xué)習(xí) (DL) 工作臺(tái)中導(dǎo)出 INT8 模型
    發(fā)表于 03-06 07:54

    如何排除深度學(xué)習(xí)工作臺(tái)上量化OpenVINO?的特定層?

    無法確定如何排除要在深度學(xué)習(xí)工作臺(tái)上量化OpenVINO?特定層
    發(fā)表于 03-06 07:31

    L298N-驅(qū)動(dòng)直流電機(jī)和步進(jìn)電機(jī)的詳細(xì)資料大總結(jié)

    電機(jī)轉(zhuǎn)速控制電路(PWM信號(hào))主要采用 L298N ,通過單片機(jī)的 I/O 輸入改變芯片控制端的電平,即可以對(duì)電機(jī) 進(jìn)行正反轉(zhuǎn),停止的操作,輸入引腳與輸出引腳的邏輯關(guān)系圖為驅(qū)動(dòng)直流電機(jī)和步進(jìn)電機(jī)的詳細(xì)資料可下載PDF文檔![hide] [/hide]
    發(fā)表于 02-26 16:02

    詳解RAD端到端強(qiáng)化學(xué)習(xí)后訓(xùn)練范式

    受限于算力和數(shù)據(jù),大語言模型預(yù)訓(xùn)練的 scalinglaw 已經(jīng)趨近于極限。DeepSeekR1/OpenAl01通過強(qiáng)化學(xué)習(xí)后訓(xùn)練涌現(xiàn)了強(qiáng)大的推理能力,掀起新一輪技術(shù)革新。
    的頭像 發(fā)表于 02-25 14:06 ?595次閱讀
    詳解RAD端到端<b class='flag-5'>強(qiáng)化學(xué)習(xí)</b>后訓(xùn)練范式

    淺談適用規(guī)模充電站的深度學(xué)習(xí)有序充電策略

    深度強(qiáng)化學(xué)習(xí)能夠有效計(jì)及電動(dòng)汽車出行模式和充電需求的不確定性,實(shí)現(xiàn)充電場站充電成本化的目標(biāo)。通過對(duì)電動(dòng)汽車泊車時(shí)間和充電需求特征進(jìn)行提取,建立適用于大規(guī)模電動(dòng)汽車有序充電的馬爾可夫決策過程模型,并
    的頭像 發(fā)表于 02-08 15:00 ?536次閱讀
    淺談適用規(guī)模充電站的<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>有序充電策略

    螞蟻集團(tuán)收購邊塞科技,吳翼出任強(qiáng)化學(xué)習(xí)實(shí)驗(yàn)室首席科學(xué)家

    近日,專注于模型賽道的初創(chuàng)企業(yè)邊塞科技宣布被螞蟻集團(tuán)收購。據(jù)悉,此次交易完成后,邊塞科技將保持獨(dú)立運(yùn)營,而原投資人已全部退出。 與此同時(shí),螞蟻集團(tuán)近期宣布成立強(qiáng)化學(xué)習(xí)實(shí)驗(yàn)室,旨在推動(dòng)大模型強(qiáng)化學(xué)習(xí)
    的頭像 發(fā)表于 11-22 11:14 ?1578次閱讀

    NPU在深度學(xué)習(xí)中的應(yīng)用

    設(shè)計(jì)的硬件加速器,它在深度學(xué)習(xí)中的應(yīng)用日益廣泛。 1. NPU的基本概念 NPU是一種專門針對(duì)深度學(xué)習(xí)算法優(yōu)化的處理器,它與傳統(tǒng)的CPU和G
    的頭像 發(fā)表于 11-14 15:17 ?1910次閱讀

    如何使用 PyTorch 進(jìn)行強(qiáng)化學(xué)習(xí)

    的計(jì)算圖和自動(dòng)微分功能,非常適合實(shí)現(xiàn)復(fù)雜的強(qiáng)化學(xué)習(xí)算法。 1. 環(huán)境(Environment) 在強(qiáng)化學(xué)習(xí)中,環(huán)境是一個(gè)抽象的概念,它定義了智能體(agent)可以執(zhí)行的動(dòng)作(actions)、觀察到
    的頭像 發(fā)表于 11-05 17:34 ?1042次閱讀

    鋅銀電池的工作原理

    鋅銀電池的工作原理主要基于鋅和銀兩種金屬之間的氧化還原反應(yīng)。以下是鋅銀電池工作原理詳細(xì)解釋:
    的頭像 發(fā)表于 10-03 14:59 ?3630次閱讀

    無極電容器的工作原理,無極電容器有正負(fù)極嗎

    無極電容器的工作原理主要基于電場的存儲(chǔ)和釋放能量。以下是其詳細(xì)工作原理說明
    的頭像 發(fā)表于 10-01 16:52 ?2004次閱讀

    谷歌AlphaChip強(qiáng)化學(xué)習(xí)工具發(fā)布,聯(lián)發(fā)科天璣芯片率先采用

    近日,谷歌在芯片設(shè)計(jì)領(lǐng)域取得了重要突破,詳細(xì)介紹了其用于芯片設(shè)計(jì)布局的強(qiáng)化學(xué)習(xí)方法,并將該模型命名為“AlphaChip”。據(jù)悉,AlphaChip有望顯著加速芯片布局規(guī)劃的設(shè)計(jì)流程,并幫助芯片在性能、功耗和面積方面實(shí)現(xiàn)更優(yōu)表現(xiàn)。
    的頭像 發(fā)表于 09-30 16:16 ?701次閱讀

    光電三極管的基本概念工作原理

    光電三極管,又稱為光敏三極管或光控三極管,是一種重要的光電轉(zhuǎn)換器件,能夠?qū)⒐庑盘?hào)轉(zhuǎn)化為電流或電壓信號(hào)。這種器件在光電通信、光電測量、光電控制等領(lǐng)域有著廣泛的應(yīng)用。下面,我們將詳細(xì)探討光電三極管的基本概念、工作原理以及其在不同領(lǐng)域
    的頭像 發(fā)表于 09-24 11:08 ?4906次閱讀

    無源傳感器的基本概念工作原理及分類

    、維護(hù)方便等優(yōu)點(diǎn),因此在許多領(lǐng)域得到了廣泛應(yīng)用。 一、無源傳感器的基本概念 1.1 定義 無源傳感器是一種不需要外部能源的傳感器,它通過檢測被測量對(duì)象自身的物理或化學(xué)特性變化來實(shí)現(xiàn)測量。無源傳感器的工作原理是利用被測量對(duì)象的特性
    的頭像 發(fā)表于 08-19 09:53 ?3135次閱讀