99精品伊人亚洲|最近国产中文炮友|九草在线视频支援|AV网站大全最新|美女黄片免费观看|国产精品资源视频|精彩无码视频一区|91大神在线后入|伊人终合在线播放|久草综合久久中文

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線(xiàn)課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

卷積神經(jīng)網(wǎng)絡(luò) 物體檢測(cè) YOLOv2

倩倩 ? 來(lái)源:三姐的哥 ? 2020-04-17 15:51 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

繼2015的YOLO后,2016年作者對(duì)YOLO升級(jí)到Y(jié)OLO2,另外一個(gè)版本YOLO9000是基于wordtree跨數(shù)據(jù)集達(dá)到檢測(cè)9000個(gè)分類(lèi),卷積層模型稱(chēng)為darknet-19,達(dá)到速度和效果的雙提升,文章里充滿(mǎn)了作者的自豪,也值得自豪;

作者正視了YOLO的兩個(gè)大問(wèn)題:回歸框不精準(zhǔn)和召回不夠;一般的解決思路都是把網(wǎng)絡(luò)加深加寬,不過(guò)本文不屑,作者反而要通過(guò)優(yōu)化網(wǎng)絡(luò)學(xué)習(xí)在準(zhǔn)確率不降的情況下提升精度和召回!

升級(jí)點(diǎn)

Batch Normalization:每個(gè)卷積層加了BN,正則都不要了,droupout也省了,過(guò)擬合也沒(méi)了,效果還好了,+2%mAP;

High Resolution Classifier - 高分辨率分類(lèi):模型訓(xùn)練時(shí)經(jīng)典做法都是先在ImageNet上pre-train,然而ImageNet上的圖片是低分辨率小于256*256的,而要檢測(cè)的圖片是高分辨率448*448的,這樣模型需要同時(shí)在高分辨的圖片上做fine-tune和檢測(cè),所以作者提出了三步驟 1) 在ImageNet低分辨率上pre-train;2) 在高分辨率數(shù)據(jù)集上fine-tune;3) 在高分辨率數(shù)據(jù)集上檢測(cè);使得模型更容易學(xué)習(xí),+4%mAP

Convolution with Anchor Boxer - 加Anchor機(jī)制:YOLO是通過(guò)最后的全連接層直接預(yù)估絕對(duì)坐標(biāo),而FasterRCNN是通過(guò)卷積層預(yù)估相對(duì)坐標(biāo),作者認(rèn)為這樣更容易學(xué)習(xí),因此YOLOv2去掉了全連接層,在最后一層卷積層下采樣后用Anchor,yolo有7*7*2 = 98個(gè)框,而YOLOv2有超過(guò)1k的anchor,最終效果上雖然mAP略有下降3個(gè)千分點(diǎn),但是召回提升7個(gè)百分點(diǎn),值了!

Dimension Clusters - 維度聚類(lèi): Anchor的尺寸faster rcnn里人工選定的,YOLOv2通過(guò)k-mean聚類(lèi)的方法,將訓(xùn)練數(shù)據(jù)里gt的框進(jìn)行聚類(lèi),注意這里不能直接用歐式距離,大框會(huì)比小框影響大,我們的目標(biāo)是IOU,因此距離為: d(box, centroid) = 1 IOU(box, centroid);下圖是結(jié)果,左圖是k和IOU的trand-off,右圖是5個(gè)中心的框尺寸,明顯看出和人工指定的差異很大;

Direct location prediction - 直接預(yù)測(cè)位置:直接預(yù)測(cè)x,y會(huì)導(dǎo)致模型訓(xùn)練不穩(wěn)定,本文預(yù)測(cè)如下tx,ty,tw,th,to,通過(guò)sigmolid歸一化到(0,1),結(jié)合dimension clusters,+5%mAP

Fine-Grained Freture - 細(xì)粒度特征:引入passthrough layer,將低維度特征傳遞給高維度,類(lèi)似于resnet的shortcut,+1%mAP;

Multi-Scale Training - 多尺度訓(xùn)練:這里的多尺度是圖片的尺寸,多了迫使模型適應(yīng)更大范圍的尺寸,每隔一定的epoch就強(qiáng)制改變輸入圖片的尺寸;

效果

如下是在VOC數(shù)據(jù)集上效率(每秒處理幀數(shù))和效果(mAP)空間里不同算法的變現(xiàn),其中YOLOv2為藍(lán)色,有不同的trade-off,效率和效果都超過(guò)已有的方法;

如下是更多的實(shí)驗(yàn)結(jié)果:

如下是COCO上的效果,看得出COCO數(shù)據(jù)集還是很難的,小物體上YOLO2依然是差一些;

YOLO9000: Better, Faster, Stronger

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 算法
    +關(guān)注

    關(guān)注

    23

    文章

    4709

    瀏覽量

    95349
  • 數(shù)據(jù)集
    +關(guān)注

    關(guān)注

    4

    文章

    1224

    瀏覽量

    25442
  • voc
    voc
    +關(guān)注

    關(guān)注

    0

    文章

    108

    瀏覽量

    15920
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    卷積神經(jīng)網(wǎng)絡(luò)如何監(jiān)測(cè)皮帶堵料情況 #人工智能

    卷積神經(jīng)網(wǎng)絡(luò)
    jf_60804796
    發(fā)布于 :2025年07月01日 17:08:42

    無(wú)刷電機(jī)小波神經(jīng)網(wǎng)絡(luò)轉(zhuǎn)子位置檢測(cè)方法的研究

    MATLAB/SIMULINK工具對(duì)該方法進(jìn)行驗(yàn)證,實(shí)驗(yàn)結(jié)果表明該方法在全程速度下效果良好。 純分享帖,點(diǎn)擊下方附件免費(fèi)獲取完整資料~~~ *附件:無(wú)刷電機(jī)小波神經(jīng)網(wǎng)絡(luò)轉(zhuǎn)子位置檢測(cè)方法的研究.pdf
    發(fā)表于 06-25 13:06

    BP神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)的比較

    BP神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)在多個(gè)方面存在顯著差異,以下是對(duì)兩者的比較: 一、結(jié)構(gòu)特點(diǎn) BP神經(jīng)網(wǎng)絡(luò) : BP神經(jīng)網(wǎng)絡(luò)是一種多層的前饋
    的頭像 發(fā)表于 02-12 15:53 ?659次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法

    在上一篇文章中,我們介紹了傳統(tǒng)機(jī)器學(xué)習(xí)的基礎(chǔ)知識(shí)和多種算法。在本文中,我們會(huì)介紹人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法,供各位老師選擇。 01 人工神經(jīng)網(wǎng)絡(luò) ? 人工神經(jīng)網(wǎng)絡(luò)模型之所
    的頭像 發(fā)表于 01-09 10:24 ?1181次閱讀
    人工<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>架構(gòu)方法

    卷積神經(jīng)網(wǎng)絡(luò)的實(shí)現(xiàn)工具與框架

    卷積神經(jīng)網(wǎng)絡(luò)因其在圖像和視頻處理任務(wù)中的卓越性能而廣受歡迎。隨著深度學(xué)習(xí)技術(shù)的快速發(fā)展,多種實(shí)現(xiàn)工具和框架應(yīng)運(yùn)而生,為研究人員和開(kāi)發(fā)者提供了強(qiáng)大的支持。 TensorFlow 概述
    的頭像 發(fā)表于 11-15 15:20 ?666次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的參數(shù)調(diào)整方法

    卷積神經(jīng)網(wǎng)絡(luò)因其在處理具有空間層次結(jié)構(gòu)的數(shù)據(jù)時(shí)的卓越性能而受到青睞。然而,CNN的成功很大程度上依賴(lài)于其參數(shù)的合理設(shè)置。參數(shù)調(diào)整是一個(gè)復(fù)雜的過(guò)程,涉及到多個(gè)超參數(shù)的選擇和優(yōu)化。 網(wǎng)絡(luò)架構(gòu)參數(shù)
    的頭像 發(fā)表于 11-15 15:10 ?1204次閱讀

    使用卷積神經(jīng)網(wǎng)絡(luò)進(jìn)行圖像分類(lèi)的步驟

    使用卷積神經(jīng)網(wǎng)絡(luò)(CNN)進(jìn)行圖像分類(lèi)是一個(gè)涉及多個(gè)步驟的過(guò)程。 1. 問(wèn)題定義 確定目標(biāo) :明確你想要分類(lèi)的圖像類(lèi)型,例如貓和狗、不同的植物種類(lèi)等。 數(shù)據(jù)需求 :確定需要多少數(shù)據(jù)以及數(shù)據(jù)的類(lèi)型
    的頭像 發(fā)表于 11-15 15:01 ?843次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)在自然語(yǔ)言處理中的應(yīng)用

    自然語(yǔ)言處理是人工智能領(lǐng)域的一個(gè)重要分支,它致力于使計(jì)算機(jī)能夠理解、解釋和生成人類(lèi)語(yǔ)言。隨著深度學(xué)習(xí)技術(shù)的發(fā)展,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)作為一種強(qiáng)大的模型,在圖像識(shí)別和語(yǔ)音處理等領(lǐng)域取得了顯著成果
    的頭像 發(fā)表于 11-15 14:58 ?802次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的比較

    在深度學(xué)習(xí)領(lǐng)域,神經(jīng)網(wǎng)絡(luò)模型被廣泛應(yīng)用于各種任務(wù),如圖像識(shí)別、自然語(yǔ)言處理和游戲智能等。其中,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)是兩種常見(jiàn)的模型。 1. 結(jié)構(gòu)差異 1.1 傳統(tǒng)
    的頭像 發(fā)表于 11-15 14:53 ?1863次閱讀

    深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)模型

    深度學(xué)習(xí)近年來(lái)在多個(gè)領(lǐng)域取得了顯著的進(jìn)展,尤其是在圖像識(shí)別、語(yǔ)音識(shí)別和自然語(yǔ)言處理等方面。卷積神經(jīng)網(wǎng)絡(luò)作為深度學(xué)習(xí)的一個(gè)分支,因其在圖像處理任務(wù)中的卓越性能而受到廣泛關(guān)注。 卷積神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 11-15 14:52 ?844次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的基本原理與算法

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,CNN)是一類(lèi)包含卷積計(jì)算且具有深度結(jié)構(gòu)的前饋神經(jīng)網(wǎng)絡(luò)(Feedforward Neural Networks
    的頭像 發(fā)表于 11-15 14:47 ?1772次閱讀

    RNN模型與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的區(qū)別

    神經(jīng)網(wǎng)絡(luò)是機(jī)器學(xué)習(xí)領(lǐng)域中的一種強(qiáng)大工具,它們能夠模擬人腦處理信息的方式。隨著技術(shù)的發(fā)展,神經(jīng)網(wǎng)絡(luò)的類(lèi)型也在不斷增加,其中循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)(如前饋
    的頭像 發(fā)表于 11-15 09:42 ?1124次閱讀

    關(guān)于卷積神經(jīng)網(wǎng)絡(luò),這些概念你厘清了么~

    隨著人工智能(AI)技術(shù)的快速發(fā)展,AI可以越來(lái)越多地支持以前無(wú)法實(shí)現(xiàn)或者難以實(shí)現(xiàn)的應(yīng)用。本文基于此解釋了 卷積神經(jīng)網(wǎng)絡(luò) (CNN)及其對(duì)人工智能和機(jī)器學(xué)習(xí)的意義。CNN是一種能夠從復(fù)雜數(shù)據(jù)中提
    發(fā)表于 10-24 13:56

    【飛凌嵌入式OK3576-C開(kāi)發(fā)板體驗(yàn)】RKNN神經(jīng)網(wǎng)絡(luò)算法開(kāi)發(fā)環(huán)境搭建

    download_model.sh 腳本,該腳本 將下載一個(gè)可用的 YOLOv5 ONNX 模型,并存放在當(dāng)前 model 目錄下,參考命令如下: 安裝COCO數(shù)據(jù)集,在深度神經(jīng)網(wǎng)絡(luò)算法中,模型的訓(xùn)練離不開(kāi)大量的數(shù)據(jù)集,數(shù)據(jù)集用于
    發(fā)表于 10-10 09:28

    matlab 神經(jīng)網(wǎng)絡(luò) 數(shù)學(xué)建模數(shù)值分析

    matlab神經(jīng)網(wǎng)絡(luò) 數(shù)學(xué)建模數(shù)值分析 精通的可以討論下
    發(fā)表于 09-18 15:14