99精品伊人亚洲|最近国产中文炮友|九草在线视频支援|AV网站大全最新|美女黄片免费观看|国产精品资源视频|精彩无码视频一区|91大神在线后入|伊人终合在线播放|久草综合久久中文

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

基于長(zhǎng)期短記憶和卷積神經(jīng)網(wǎng)絡(luò)的駕駛員困倦狀態(tài)監(jiān)測(cè)方法

牽手一起夢(mèng) ? 來(lái)源:意法半導(dǎo)體 ? 作者:佚名 ? 2020-03-25 16:50 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

1、前言

困倦是一種生理狀態(tài),其特征是人的意識(shí)程度降低,難以保持清醒狀態(tài)。根據(jù)國(guó)家安全委員會(huì)的調(diào)查,在美國(guó),疲勞駕駛導(dǎo)致的致命性事故的占比正在顯著上升。因此,開(kāi)發(fā)一種可以提前發(fā)現(xiàn)駕駛員生理狀況不適宜開(kāi)車的有效預(yù)警系統(tǒng)將具有重要意義。據(jù)報(bào)道,有研究顯示,心率變異性(HRV)與駕駛員的注意力程度相關(guān)聯(lián)。準(zhǔn)確的講,心率變異性是一個(gè)代表個(gè)體的生理適應(yīng)能力和行為靈活性的重要指標(biāo)。評(píng)估心臟運(yùn)動(dòng)的方法是使用PPG信號(hào)測(cè)量血壓,由此再評(píng)估心率變異性。具體地說(shuō),PPG信號(hào)是由代表逐次心動(dòng)周期的血管容積峰值組成,PPG檢測(cè)方法是,使用LED光源照射皮膚的不同部位,再用光電二極管評(píng)價(jià)光的反射強(qiáng)度。盡管生理信號(hào)使我們能夠監(jiān)測(cè)困倦程度,但是最近的研究方向主要是使用計(jì)算機(jī)視覺(jué)技術(shù)評(píng)估駕駛員的疲勞程度。雖然在汽車環(huán)境中開(kāi)發(fā)人臉檢測(cè)系統(tǒng)肯定具有挑戰(zhàn)性,但仍有許多方法使用攝像頭確定眨眼率,由此來(lái)評(píng)估疲勞程度。與其它研究不同,我們的方法側(cè)重于利用計(jì)算機(jī)視覺(jué)技術(shù)來(lái)檢測(cè)和提取人臉特征點(diǎn),通過(guò)分析先前錄制的視頻序列的像素強(qiáng)度變化,來(lái)定義人臉特征點(diǎn)的時(shí)間序列。更具體地說(shuō),我們的方法的基本原理也是通過(guò)“視頻放大”來(lái)揭示血壓變化引起的面部細(xì)微運(yùn)動(dòng)。本研究的目的是通過(guò)定義人臉特征點(diǎn)時(shí)間序列而不是使用傳感器來(lái)構(gòu)建PPG信號(hào)。

本文后面的結(jié)構(gòu)如下:第二部分介紹相關(guān)的研究成果;第三部分概述PPG信號(hào),并介紹我們的基于長(zhǎng)期短記憶和卷積神經(jīng)網(wǎng)絡(luò)的管道。第四部分解釋實(shí)驗(yàn)過(guò)程。最后,第五部分討論我們方法的優(yōu)點(diǎn)和未來(lái)研究方向。

2、相關(guān)研究

在以往發(fā)表的論文著作中,大部分是通過(guò)生理信號(hào)檢測(cè)駕駛員困倦,取得了很高的檢測(cè)精度。事實(shí)上,很多研究證明,僅基于計(jì)算機(jī)視覺(jué)技術(shù)的駕駛員疲勞監(jiān)測(cè)解決方案可能不一定行之有效,尤其是側(cè)重于分析交通標(biāo)志的視覺(jué)方法,在路況不佳時(shí),往往會(huì)失敗。

一部分科研人員曾公布了一項(xiàng)光體積描述信號(hào)(PPG) 檢測(cè)研究成果,作者使用低功率無(wú)線PPG傳感器取得了很好的檢測(cè)效果。另一種方法是作者利用在手指和耳垂檢測(cè)到的低頻和高頻PPG信號(hào)來(lái)評(píng)估疲勞程度。本文引用的研究成果主要是通過(guò)研究ECG和PPG信號(hào)來(lái)評(píng)估HRV信號(hào)。不過(guò),本文所引用的方法對(duì)計(jì)算性能有較高的要求,需要在車上集成昂貴的檢測(cè)設(shè)備。盡管集成的傳感器不一定是直接測(cè)量工具,但為了準(zhǔn)確地獲取生理信號(hào),駕駛員還是需要將手或身體的其它部分(例如耳垂或手指)放在傳感器上,這對(duì)于在汽車上推廣應(yīng)用是一個(gè)限制。本文另辟蹊徑,提出一個(gè)創(chuàng)新的框架,基本原理是抓取司機(jī)面部圖像,采集人臉特征點(diǎn),重建PPG信號(hào),以此評(píng)估HRV信號(hào)和疲勞程度。

3、背景和管道方案

如前所述,我們提出了一種創(chuàng)新的駕駛員困倦狀態(tài)監(jiān)測(cè)方法,而無(wú)需使用傳感器來(lái)獲取PPG信號(hào)。部分學(xué)者的研究成果闡述了視頻放大方法是如何通過(guò)放大普通視頻圖像來(lái)揭示人臉面部的運(yùn)動(dòng)變化,因?yàn)橹鸫涡膭?dòng)周期中的血壓變化會(huì)引起皮膚不同部位的顏色變化。研究證明,自主神經(jīng)系統(tǒng)活動(dòng)可調(diào)節(jié)某些生理過(guò)程,例如,血壓和呼吸速率,通過(guò)評(píng)估心率變異性信號(hào)可以間接測(cè)量這些生理過(guò)程,因?yàn)樾穆首儺愋孕盘?hào)在生理壓力、極度疲勞和困倦期間會(huì)出現(xiàn)變化。

評(píng)估HRV心率變異性需要使用生物反饋工具或軟件,以及檢測(cè)心電信號(hào)的高質(zhì)量傳感器,還需要功能強(qiáng)大的處理器來(lái)管理大量的數(shù)據(jù)。ECG信號(hào)是傳統(tǒng)的心率變異性評(píng)估方法,不過(guò),這種方法在使用上存在某些缺陷,盡管檢測(cè)效果良好,但是在數(shù)據(jù)采集(數(shù)據(jù)采樣)過(guò)程中,人體的細(xì)微運(yùn)動(dòng)會(huì)導(dǎo)致信號(hào)內(nèi)出現(xiàn)一些噪聲和偽影。為了克服ECG的問(wèn)題,業(yè)界提出PPG信號(hào)是可靠的解決方案,檢測(cè)血液容積變化的能力使PPG能夠有效地檢測(cè)裸眼難以觀察到的皮膚細(xì)微運(yùn)動(dòng)。特別是,通過(guò)分析PPG信號(hào),我們能夠界定在特定時(shí)段內(nèi)的心率變化,顯示自主神經(jīng)系統(tǒng)的兩個(gè)分支(副交感神經(jīng)和交感神經(jīng))是否都在正常工作。通常,HRV值小,表示心率間隔恒定;HRV值大,則表示心率間隔異常。非常正常的心律和心率的細(xì)微變化可以確定注意力是否因?yàn)槁陨韷毫Χ档?。但是,不存在一個(gè)標(biāo)準(zhǔn)的HRV值,因?yàn)镠RV值因人而異。

考慮到這一點(diǎn),我們采用長(zhǎng)期短記憶(LSTM)神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)(CNN)相結(jié)合的方法開(kāi)發(fā)了一個(gè)駕駛員困倦監(jiān)測(cè)系統(tǒng)。本文提出的管道機(jī)制代表心臟運(yùn)動(dòng)評(píng)估方法取得了進(jìn)步,因?yàn)樗鞘褂靡粋€(gè)低幀率(25fps)攝像頭檢測(cè)和提取人臉圖像中的關(guān)鍵特征點(diǎn),并分析每個(gè)視頻幀的像素變化。準(zhǔn)確地講,LSTM是評(píng)估數(shù)據(jù)之間隱藏的非線性相關(guān)性的有力解決方案。

具體地講,LSTM管道的輸出是綜合傳感器檢測(cè)到的原始PPG目標(biāo)數(shù)據(jù)后預(yù)測(cè)的人臉特征點(diǎn)時(shí)間序列。

此外,CNN模型的準(zhǔn)確分類表示LSTM預(yù)測(cè)有效,可以確定汽車駕駛員的注意力程度。

4、實(shí)驗(yàn)

總共有71個(gè)對(duì)象參與了我們的LSTM-CNN管道運(yùn)行。更具體地說(shuō),數(shù)據(jù)集是來(lái)自不同性別、年齡(20至70歲之間)和病理的病患/駕駛員的PPG樣本。在這種情況下,我們不僅采集健康對(duì)象的數(shù)據(jù),還收集高血壓、糖尿病等病患的數(shù)據(jù)??紤]到這兩種困倦狀態(tài)的差異,分別測(cè)量了兩種困倦各自的PPG信號(hào)樣本。具體地而言,我們模擬被同步ECG采樣信號(hào)證實(shí)的完全清醒和困倦兩種情景,其中Beta和Alpha波形分別證實(shí)大腦在喚醒和困倦時(shí)的活動(dòng)狀態(tài)。每種情景的模擬間隔設(shè)為5分鐘,以確保系統(tǒng)有充足的時(shí)間完成初步校準(zhǔn)和實(shí)時(shí)連續(xù)學(xué)習(xí)。同時(shí),我們使用低幀率(25fps)全高清攝像機(jī)記錄一段駕駛員的面部視頻,如前文所述,我們先用基于Kazemi和Sullivan機(jī)器學(xué)習(xí)算法 的dlib庫(kù),檢測(cè)先前錄制的視頻幀,提取人臉面部特征點(diǎn),然后,計(jì)算與每個(gè)特征點(diǎn)關(guān)聯(lián)的像素強(qiáng)度,以及每幀像素強(qiáng)度的變化,確定人臉特征點(diǎn)的時(shí)間序列,將其輸入LSTM神經(jīng)網(wǎng)絡(luò)。

4.1 CNN管道

本節(jié)將更詳細(xì)地介紹實(shí)驗(yàn)中使用的CNN模型架構(gòu)。本文提出的CNN架構(gòu)為驗(yàn)證LSTM預(yù)測(cè)結(jié)果提供有力的證據(jù)。具體地講,我們的CNN模型能夠跟蹤和學(xué)習(xí)汽車駕駛員的面部表情,從而提高困倦檢測(cè)水平。為了訓(xùn)練模型,我們將批大?。╞atch size)設(shè)為32,初始學(xué)習(xí)率設(shè)為0.0001。此外,我們?cè)陔[藏層中使用了32個(gè)神經(jīng)元,在二進(jìn)制分類中使用了2個(gè)輸出神經(jīng)元。

我們非常看好實(shí)驗(yàn)結(jié)果,因?yàn)闇?zhǔn)確率達(dá)到80%。

4.2 長(zhǎng)短期記憶網(wǎng)絡(luò)(LSTM,Long Short-Term Memory)管道

基于長(zhǎng)期短記憶和卷積神經(jīng)網(wǎng)絡(luò)的駕駛員困倦狀態(tài)監(jiān)測(cè)方法

圖. 1. LSTM管道

關(guān)于長(zhǎng)短期記憶網(wǎng)絡(luò)(LSTM,Long Short-Term Memory)檢測(cè)順序數(shù)據(jù)(時(shí)間序列)的關(guān)聯(lián)性的能力,我們構(gòu)建了一個(gè)LSTM模型,用面部特征點(diǎn)時(shí)間序列作為輸入數(shù)據(jù),原始PPG信號(hào)作為目標(biāo)數(shù)據(jù),重建PPG信號(hào)(圖1)。在使用MinMaxScaler算法調(diào)整(0.2,0.8)范圍內(nèi)的所有時(shí)間序列值后,綜合考慮以下參數(shù),我們進(jìn)行了模型訓(xùn)練。模擬訓(xùn)練采用256個(gè)神經(jīng)元,批大?。╞atch size)128,初始學(xué)習(xí)率和輟學(xué)率分別設(shè)為0.001和0.2。為了評(píng)估PPG重構(gòu)信號(hào)的魯棒性,我們計(jì)算了PPG最小點(diǎn)的頻率(傅里葉頻譜),我們特別分析了這些點(diǎn)的頻率,比較了原始PPG最小點(diǎn)的頻率與重構(gòu)PPG最小點(diǎn)的頻率。

5、結(jié)論

圖2.原始PPG最小點(diǎn)的快速傅立葉變換(FFT)頻譜(藍(lán)色)和重建PPG最小點(diǎn)的快速傅立葉變換(綠色)。

最后,我們提供了一種基于LSTM-CNN的有效的監(jiān)測(cè)系統(tǒng),通過(guò)PPG信號(hào)評(píng)估心臟活動(dòng)來(lái)確定駕駛員的困倦程度。與其它方法不同,我們的方法是利用面部特征點(diǎn)數(shù)據(jù)重建PPG信號(hào),不涉及傳感器系統(tǒng)。如前文所述,我們構(gòu)建了LSTM管道,用面部特征點(diǎn)時(shí)間序列作為輸入數(shù)據(jù),傳感器檢測(cè)到的PPG作為目標(biāo)數(shù)據(jù),證明PPG重構(gòu)信號(hào)的魯棒性。此外,我們還構(gòu)建了CNN模型,不僅可以對(duì)駕駛員的生理狀態(tài)進(jìn)行分類,還可以驗(yàn)證LSTM的預(yù)測(cè)結(jié)果。最后,我們計(jì)算了原始PPG最小點(diǎn)的快速傅立葉變換(FFT)頻譜和重構(gòu)的PPG最小點(diǎn)的FFT頻譜(圖2)。實(shí)驗(yàn)結(jié)果證明,我們的方法有廣闊的應(yīng)用前景,因?yàn)槲覀兡軌騾^(qū)分瞌睡的對(duì)象與清醒的對(duì)象,準(zhǔn)確率接近100%,這與科學(xué)文獻(xiàn)報(bào)道的類似管道取得的平均成績(jī)一致。

責(zé)任編輯:gt

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 傳感器
    +關(guān)注

    關(guān)注

    2566

    文章

    53008

    瀏覽量

    767629
  • 二極管
    +關(guān)注

    關(guān)注

    148

    文章

    10101

    瀏覽量

    171704
  • 神經(jīng)網(wǎng)絡(luò)

    關(guān)注

    42

    文章

    4814

    瀏覽量

    103670
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    卷積神經(jīng)網(wǎng)絡(luò)如何監(jiān)測(cè)皮帶堵料情況 #人工智能

    卷積神經(jīng)網(wǎng)絡(luò)
    jf_60804796
    發(fā)布于 :2025年07月01日 17:08:42

    BP神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)的比較

    BP神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)在多個(gè)方面存在顯著差異,以下是對(duì)兩者的比較: 一、結(jié)構(gòu)特點(diǎn) BP神經(jīng)網(wǎng)絡(luò) : BP神經(jīng)網(wǎng)絡(luò)是一種多層的前饋
    的頭像 發(fā)表于 02-12 15:53 ?673次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法

    在上一篇文章中,我們介紹了傳統(tǒng)機(jī)器學(xué)習(xí)的基礎(chǔ)知識(shí)和多種算法。在本文中,我們會(huì)介紹人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法,供各位老師選擇。 01 人工神經(jīng)網(wǎng)絡(luò) ? 人工
    的頭像 發(fā)表于 01-09 10:24 ?1212次閱讀
    人工<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>架構(gòu)<b class='flag-5'>方法</b>

    守護(hù)駕駛安全,駕駛員監(jiān)控系統(tǒng)DMS應(yīng)用解決方案

    監(jiān)控更加高效和精準(zhǔn)。圖片來(lái)源于網(wǎng)絡(luò)駕駛員監(jiān)測(cè)系統(tǒng)主要通過(guò)傳感器、攝像頭收集駕駛員的面部圖像,定位頭部姿勢(shì)、人臉特征及行為特征,并通過(guò)各種異常駕駛
    的頭像 發(fā)表于 12-19 17:28 ?1795次閱讀
    守護(hù)<b class='flag-5'>駕駛</b>安全,<b class='flag-5'>駕駛員</b>監(jiān)控系統(tǒng)DMS應(yīng)用解決方案

    華為發(fā)布駕駛員行為異常檢測(cè)新專利

    近日,華為技術(shù)有限公司公布了一項(xiàng)名為“一種駕駛員行為異常檢測(cè)方法和裝置”的新專利。這一專利的公布,標(biāo)志著華為在智能交通系統(tǒng)領(lǐng)域的又一重要突破。 據(jù)悉,該專利通過(guò)獲取第一對(duì)象的行為信息、第一
    的頭像 發(fā)表于 12-04 13:42 ?576次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的實(shí)現(xiàn)工具與框架

    卷積神經(jīng)網(wǎng)絡(luò)因其在圖像和視頻處理任務(wù)中的卓越性能而廣受歡迎。隨著深度學(xué)習(xí)技術(shù)的快速發(fā)展,多種實(shí)現(xiàn)工具和框架應(yīng)運(yùn)而生,為研究人員和開(kāi)發(fā)者提供了強(qiáng)大的支持。 TensorFlow 概述
    的頭像 發(fā)表于 11-15 15:20 ?672次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的參數(shù)調(diào)整方法

    卷積神經(jīng)網(wǎng)絡(luò)因其在處理具有空間層次結(jié)構(gòu)的數(shù)據(jù)時(shí)的卓越性能而受到青睞。然而,CNN的成功很大程度上依賴于其參數(shù)的合理設(shè)置。參數(shù)調(diào)整是一個(gè)復(fù)雜的過(guò)程,涉及到多個(gè)超參數(shù)的選擇和優(yōu)化。 網(wǎng)絡(luò)架構(gòu)參數(shù)
    的頭像 發(fā)表于 11-15 15:10 ?1215次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)在自然語(yǔ)言處理中的應(yīng)用

    自然語(yǔ)言處理是人工智能領(lǐng)域的一個(gè)重要分支,它致力于使計(jì)算機(jī)能夠理解、解釋和生成人類語(yǔ)言。隨著深度學(xué)習(xí)技術(shù)的發(fā)展,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)作為一種強(qiáng)大的模型,在圖像識(shí)別和語(yǔ)音處理等領(lǐng)域取得了顯著成果
    的頭像 發(fā)表于 11-15 14:58 ?807次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的比較

    在深度學(xué)習(xí)領(lǐng)域,神經(jīng)網(wǎng)絡(luò)模型被廣泛應(yīng)用于各種任務(wù),如圖像識(shí)別、自然語(yǔ)言處理和游戲智能等。其中,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)是兩種常見(jiàn)的模型。 1. 結(jié)構(gòu)差異 1.1 傳統(tǒng)
    的頭像 發(fā)表于 11-15 14:53 ?1881次閱讀

    深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)模型

    深度學(xué)習(xí)近年來(lái)在多個(gè)領(lǐng)域取得了顯著的進(jìn)展,尤其是在圖像識(shí)別、語(yǔ)音識(shí)別和自然語(yǔ)言處理等方面。卷積神經(jīng)網(wǎng)絡(luò)作為深度學(xué)習(xí)的一個(gè)分支,因其在圖像處理任務(wù)中的卓越性能而受到廣泛關(guān)注。 卷積神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 11-15 14:52 ?848次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的基本原理與算法

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,CNN)是一類包含卷積計(jì)算且具有深度結(jié)構(gòu)的前饋神經(jīng)網(wǎng)絡(luò)(Feedforward Neural Networks
    的頭像 發(fā)表于 11-15 14:47 ?1785次閱讀

    基于LSTM神經(jīng)網(wǎng)絡(luò)的情感分析方法

    情感分析是自然語(yǔ)言處理(NLP)領(lǐng)域的一項(xiàng)重要任務(wù),旨在識(shí)別和提取文本中的主觀信息,如情感傾向、情感強(qiáng)度等。隨著深度學(xué)習(xí)技術(shù)的發(fā)展,基于LSTM(長(zhǎng)短期記憶神經(jīng)網(wǎng)絡(luò)的情感分析方法因其出色的序列建模
    的頭像 發(fā)表于 11-13 10:15 ?1282次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)與工作機(jī)制

    的結(jié)構(gòu)與工作機(jī)制的介紹: 一、LSTM神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu) LSTM神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)主要包括以下幾個(gè)部分: 記憶單元(Memory Cell) : 記憶單元是LSTM
    的頭像 發(fā)表于 11-13 10:05 ?1635次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)的基本原理 如何實(shí)現(xiàn)LSTM神經(jīng)網(wǎng)絡(luò)

    LSTM(長(zhǎng)短期記憶神經(jīng)網(wǎng)絡(luò)是一種特殊的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),它能夠?qū)W習(xí)長(zhǎng)期依賴信息。在處理序列數(shù)據(jù)時(shí),如時(shí)間序列分析、自然語(yǔ)言處理等,LSTM因其能夠有效地捕捉時(shí)間序列中的
    的頭像 發(fā)表于 11-13 09:53 ?1588次閱讀

    關(guān)于卷積神經(jīng)網(wǎng)絡(luò),這些概念你厘清了么~

    這個(gè)小型網(wǎng)絡(luò),用于描述網(wǎng)絡(luò)的方程中也具有32個(gè)偏置和32個(gè)權(quán)重。 CIFAR神經(jīng)網(wǎng)絡(luò)是一種廣泛用于圖像識(shí)別的CNN。它主要由兩種類型的層組成:卷積層和池化層,這兩種層分別使用
    發(fā)表于 10-24 13:56